mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 03:40:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
 | 
						||
# License:
 | 
						||
# Modified MIT License
 | 
						||
 | 
						||
# Software Copyright (c) 2019 OpenAI
 | 
						||
 | 
						||
# We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please.
 | 
						||
# We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2.
 | 
						||
 | 
						||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
 | 
						||
# associated documentation files (the "Software"), to deal in the Software without restriction,
 | 
						||
# including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | 
						||
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
 | 
						||
# subject to the following conditions:
 | 
						||
 | 
						||
# The above copyright notice and this permission notice shall be included
 | 
						||
# in all copies or substantial portions of the Software.
 | 
						||
# The above copyright notice and this permission notice need not be included
 | 
						||
# with content created by the Software.
 | 
						||
 | 
						||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 | 
						||
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | 
						||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | 
						||
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
 | 
						||
# OR OTHER DEALINGS IN THE SOFTWARE.
 | 
						||
 | 
						||
import os
 | 
						||
import json
 | 
						||
import regex as re
 | 
						||
import requests
 | 
						||
from tqdm import tqdm
 | 
						||
from functools import lru_cache
 | 
						||
 | 
						||
 | 
						||
@lru_cache()
 | 
						||
def bytes_to_unicode():
 | 
						||
    """
 | 
						||
    Returns list of utf-8 byte and a corresponding list of unicode strings.
 | 
						||
    The reversible bpe codes work on unicode strings.
 | 
						||
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
 | 
						||
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
 | 
						||
    This is a significant percentage of your normal, say, 32K bpe vocab.
 | 
						||
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
 | 
						||
    And avoids mapping to whitespace/control characters the bpe code barfs on.
 | 
						||
    """
 | 
						||
    bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
 | 
						||
    cs = bs[:]
 | 
						||
    n = 0
 | 
						||
    for b in range(2**8):
 | 
						||
        if b not in bs:
 | 
						||
            bs.append(b)
 | 
						||
            cs.append(2**8 + n)
 | 
						||
            n += 1
 | 
						||
    cs = [chr(n) for n in cs]
 | 
						||
    return dict(zip(bs, cs))
 | 
						||
 | 
						||
 | 
						||
def get_pairs(word):
 | 
						||
    """
 | 
						||
    Return set of symbol pairs in a word.
 | 
						||
    Word is represented as tuple of symbols (symbols being variable-length strings).
 | 
						||
    """
 | 
						||
    pairs = set()
 | 
						||
    prev_char = word[0]
 | 
						||
    for char in word[1:]:
 | 
						||
        pairs.add((prev_char, char))
 | 
						||
        prev_char = char
 | 
						||
    return pairs
 | 
						||
 | 
						||
 | 
						||
class Encoder:
 | 
						||
    def __init__(self, encoder, bpe_merges, errors='replace'):
 | 
						||
        self.encoder = encoder
 | 
						||
        self.decoder = {v: k for k, v in self.encoder.items()}
 | 
						||
        self.errors = errors  # how to handle errors in decoding
 | 
						||
        self.byte_encoder = bytes_to_unicode()
 | 
						||
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
 | 
						||
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
 | 
						||
        self.cache = {}
 | 
						||
 | 
						||
        # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
 | 
						||
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
 | 
						||
 | 
						||
    def bpe(self, token):
 | 
						||
        if token in self.cache:
 | 
						||
            return self.cache[token]
 | 
						||
        word = tuple(token)
 | 
						||
        pairs = get_pairs(word)
 | 
						||
 | 
						||
        if not pairs:
 | 
						||
            return token
 | 
						||
 | 
						||
        while True:
 | 
						||
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
 | 
						||
            if bigram not in self.bpe_ranks:
 | 
						||
                break
 | 
						||
            first, second = bigram
 | 
						||
            new_word = []
 | 
						||
            i = 0
 | 
						||
            while i < len(word):
 | 
						||
                try:
 | 
						||
                    j = word.index(first, i)
 | 
						||
                    new_word.extend(word[i:j])
 | 
						||
                    i = j
 | 
						||
                except ValueError:
 | 
						||
                    new_word.extend(word[i:])
 | 
						||
                    break
 | 
						||
 | 
						||
                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
 | 
						||
                    new_word.append(first + second)
 | 
						||
                    i += 2
 | 
						||
                else:
 | 
						||
                    new_word.append(word[i])
 | 
						||
                    i += 1
 | 
						||
            new_word = tuple(new_word)
 | 
						||
            word = new_word
 | 
						||
            if len(word) == 1:
 | 
						||
                break
 | 
						||
            else:
 | 
						||
                pairs = get_pairs(word)
 | 
						||
        word = ' '.join(word)
 | 
						||
        self.cache[token] = word
 | 
						||
        return word
 | 
						||
 | 
						||
    def encode(self, text):
 | 
						||
        bpe_tokens = []
 | 
						||
        for token in re.findall(self.pat, text):
 | 
						||
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
 | 
						||
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
 | 
						||
        return bpe_tokens
 | 
						||
 | 
						||
    def decode(self, tokens):
 | 
						||
        text = ''.join([self.decoder[token] for token in tokens])
 | 
						||
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
 | 
						||
        return text
 | 
						||
 | 
						||
 | 
						||
def get_encoder(model_name, models_dir):
 | 
						||
    with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
 | 
						||
        encoder = json.load(f)
 | 
						||
    with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
 | 
						||
        bpe_data = f.read()
 | 
						||
    bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
 | 
						||
    return Encoder(encoder=encoder, bpe_merges=bpe_merges)
 | 
						||
 | 
						||
 | 
						||
def download_vocab():
 | 
						||
    # Modified code from
 | 
						||
    subdir = 'gpt2_model'
 | 
						||
    if not os.path.exists(subdir):
 | 
						||
        os.makedirs(subdir)
 | 
						||
    subdir = subdir.replace('\\', '/')  # needed for Windows
 | 
						||
 | 
						||
    for filename in ['encoder.json', 'vocab.bpe']:
 | 
						||
        r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M/" + filename, stream=True)
 | 
						||
 | 
						||
        with open(os.path.join(subdir, filename), 'wb') as f:
 | 
						||
            file_size = int(r.headers["content-length"])
 | 
						||
            chunk_size = 1000
 | 
						||
            with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
 | 
						||
                # 1k for chunk_size, since Ethernet packet size is around 1500 bytes
 | 
						||
                for chunk in r.iter_content(chunk_size=chunk_size):
 | 
						||
                    f.write(chunk)
 | 
						||
                    pbar.update(chunk_size)
 |