Tao Qian cec445f146
Minor readability improvement in dataloader.ipynb (#461)
* Minor readability improvement in dataloader.ipynb

- The tokenizer and encoded_text variables at the root level are unused.
- The default params for create_dataloader_v1 are confusing, especially for the default batch_size 4, which happens to be the same as the max_length.

* readability improvements

---------

Co-authored-by: rasbt <mail@sebastianraschka.com>
2025-01-04 11:26:10 -06:00

201 lines
5.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "6e2a4891-c257-4d6b-afb3-e8fef39d0437",
"metadata": {},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>\n"
]
},
{
"cell_type": "markdown",
"id": "6f678e62-7bcb-4405-86ae-dce94f494303",
"metadata": {},
"source": [
"# The Main Data Loading Pipeline Summarized"
]
},
{
"cell_type": "markdown",
"id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
"metadata": {},
"source": [
"The complete chapter code is located in [ch02.ipynb](./ch02.ipynb).\n",
"\n",
"This notebook contains the main takeaway, the data loading pipeline without the intermediate steps."
]
},
{
"cell_type": "markdown",
"id": "2b4e8f2d-cb81-41a3-8780-a70b382e18ae",
"metadata": {},
"source": [
"Packages that are being used in this notebook:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c7ed6fbe-45ac-40ce-8ea5-4edb212565e1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch version: 2.4.0\n",
"tiktoken version: 0.7.0\n"
]
}
],
"source": [
"# NBVAL_SKIP\n",
"from importlib.metadata import version\n",
"\n",
"print(\"torch version:\", version(\"torch\"))\n",
"print(\"tiktoken version:\", version(\"tiktoken\"))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
"metadata": {},
"outputs": [],
"source": [
"import tiktoken\n",
"import torch\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = tokenizer.encode(txt, allowed_special={\"<|endoftext|>\"})\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",
" input_chunk = token_ids[i:i + max_length]\n",
" target_chunk = token_ids[i + 1: i + max_length + 1]\n",
" self.input_ids.append(torch.tensor(input_chunk))\n",
" self.target_ids.append(torch.tensor(target_chunk))\n",
"\n",
" def __len__(self):\n",
" return len(self.input_ids)\n",
"\n",
" def __getitem__(self, idx):\n",
" return self.input_ids[idx], self.target_ids[idx]\n",
"\n",
"\n",
"def create_dataloader_v1(txt, batch_size, max_length, stride,\n",
" shuffle=True, drop_last=True, num_workers=0):\n",
" # Initialize the tokenizer\n",
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
"\n",
" # Create dataset\n",
" dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
"\n",
" # Create dataloader\n",
" dataloader = DataLoader(\n",
" dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)\n",
"\n",
" return dataloader\n",
"\n",
"\n",
"with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
" raw_text = f.read()\n",
"\n",
"vocab_size = 50257\n",
"output_dim = 256\n",
"context_length = 1024\n",
"\n",
"\n",
"token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
"pos_embedding_layer = torch.nn.Embedding(context_length, output_dim)\n",
"\n",
"batch_size = 8\n",
"max_length = 4\n",
"dataloader = create_dataloader_v1(\n",
" raw_text,\n",
" batch_size=batch_size,\n",
" max_length=max_length,\n",
" stride=max_length\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
"metadata": {},
"outputs": [],
"source": [
"for batch in dataloader:\n",
" x, y = batch\n",
"\n",
" token_embeddings = token_embedding_layer(x)\n",
" pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
"\n",
" input_embeddings = token_embeddings + pos_embeddings\n",
"\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d3664332-e6bb-447e-8b96-203aafde8b24",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([8, 4, 256])\n"
]
}
],
"source": [
"print(input_embeddings.shape)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}