mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
103 lines
4.1 KiB
Python
103 lines
4.1 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
import tiktoken
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
|
|
class GPTDatasetV1(Dataset):
|
|
def __init__(self, txt, tokenizer, max_length, stride):
|
|
self.input_ids = []
|
|
self.target_ids = []
|
|
|
|
# Tokenize the entire text
|
|
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
|
|
|
|
# Use a sliding window to chunk the book into overlapping sequences of max_length
|
|
for i in range(0, len(token_ids) - max_length, stride):
|
|
input_chunk = token_ids[i:i + max_length]
|
|
target_chunk = token_ids[i + 1: i + max_length + 1]
|
|
self.input_ids.append(torch.tensor(input_chunk))
|
|
self.target_ids.append(torch.tensor(target_chunk))
|
|
|
|
def __len__(self):
|
|
return len(self.input_ids)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.input_ids[idx], self.target_ids[idx]
|
|
|
|
|
|
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
|
stride=128, shuffle=True, drop_last=True, num_workers=0):
|
|
# Initialize the tokenizer
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
# Create dataset
|
|
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
|
|
|
|
# Create dataloader
|
|
dataloader = DataLoader(
|
|
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
|
|
|
|
return dataloader
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
|
super().__init__()
|
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
|
|
|
self.d_out = d_out
|
|
self.num_heads = num_heads
|
|
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
|
|
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
|
|
|
|
def forward(self, x):
|
|
b, num_tokens, d_in = x.shape
|
|
|
|
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
|
queries = self.W_query(x)
|
|
values = self.W_value(x)
|
|
|
|
# We implicitly split the matrix by adding a `num_heads` dimension
|
|
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
|
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
|
|
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
|
keys = keys.transpose(1, 2)
|
|
queries = queries.transpose(1, 2)
|
|
values = values.transpose(1, 2)
|
|
|
|
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
|
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
|
|
|
# Original mask truncated to the number of tokens and converted to boolean
|
|
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
|
|
|
|
# Use the mask to fill attention scores
|
|
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
|
attn_weights = self.dropout(attn_weights)
|
|
|
|
# Shape: (b, num_tokens, num_heads, head_dim)
|
|
context_vec = (attn_weights @ values).transpose(1, 2)
|
|
|
|
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
|
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
|
context_vec = self.out_proj(context_vec) # optional projection
|
|
|
|
return context_vec
|