mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
169 lines
5.0 KiB
Plaintext
169 lines
5.0 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ba450fb1-8a26-4894-ab7a-5d7bfefe90ce",
|
|
"metadata": {},
|
|
"source": [
|
|
"<table style=\"width:100%\">\n",
|
|
"<tr>\n",
|
|
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
|
"<font size=\"2\">\n",
|
|
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
|
|
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
|
|
"</font>\n",
|
|
"</td>\n",
|
|
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
|
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
|
|
"</td>\n",
|
|
"</tr>\n",
|
|
"</table>"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "51c9672d-8d0c-470d-ac2d-1271f8ec3f14",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Chapter 6 Exercise solutions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5fea8be3-30a1-4623-a6d7-b095c6c1092e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Exercise 6.1: Increasing the context length"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5860ba9f-2db3-4480-b96b-4be1c68981eb",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can pad the inputs to the maximum number of tokens the model supports by setting the max length to 1024:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"max_length = 1024\n",
|
|
"\n",
|
|
"train_dataset = SpamDataset(base_path / \"train.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
"val_dataset = SpamDataset(base_path / \"validation.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
"test_dataset = SpamDataset(base_path / \"test.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
|
"```\n",
|
|
"\n",
|
|
"or, equivalently, we can define the `max_length` via:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"max_length = model.pos_emb.weight.shape[0]\n",
|
|
"```\n",
|
|
"\n",
|
|
"or\n",
|
|
"\n",
|
|
"```python\n",
|
|
"max_length = BASE_CONFIG[\"context_length\"]\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2b0f4d5d-17fd-4265-93d8-ea08a22fdaf8",
|
|
"metadata": {},
|
|
"source": [
|
|
"For convenience, you can run this experiment via\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"python additional-experiments.py --context_length \"model_context_length\"\n",
|
|
"```\n",
|
|
"\n",
|
|
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 78.33% (versus the 95.67% in the main chapter)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5a780455-f52a-48d1-ab82-6afd40bcad8b",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Exercise 6.2: Finetuning the whole model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "56aa5208-aa29-4165-a0ec-7480754e2a18",
|
|
"metadata": {},
|
|
"source": [
|
|
"Instead of finetuning just the final transformer block, we can finetune the entire model by removing the following lines from the code:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"for param in model.parameters():\n",
|
|
" param.requires_grad = False\n",
|
|
"```\n",
|
|
"\n",
|
|
"For convenience, you can run this experiment via\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"python additional-experiments.py --trainable_layers all\n",
|
|
"```\n",
|
|
"\n",
|
|
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a 1% improved test accuracy of 96.67% (versus the 95.67% in the main chapter)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2269bce3-f2b5-4a76-a692-5977c75a57b6",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Exercise 6.3: Finetuning the first versus last token "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7418a629-51b6-4aa2-83b7-bc0261bc370f",
|
|
"metadata": {},
|
|
"source": [
|
|
"Rather than finetuning the last output token, we can finetune the first output token by changing \n",
|
|
"\n",
|
|
"```python\n",
|
|
"model(input_batch)[:, -1, :]\n",
|
|
"```\n",
|
|
"\n",
|
|
"to\n",
|
|
"\n",
|
|
"```python\n",
|
|
"model(input_batch)[:, 0, :]\n",
|
|
"```\n",
|
|
"\n",
|
|
"everywhere in the code.\n",
|
|
"\n",
|
|
"For convenience, you can run this experiment via\n",
|
|
"\n",
|
|
"```\n",
|
|
"python additional-experiments.py --trainable_token first\n",
|
|
"```\n",
|
|
"\n",
|
|
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 75.00% (versus the 95.67% in the main chapter)."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|