mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			385 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| #
 | |
| # This file collects all the relevant code that we covered thus far
 | |
| # throughout Chapters 2-5.
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import urllib
 | |
| 
 | |
| import numpy as np
 | |
| import tensorflow as tf
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from tqdm import tqdm
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 3
 | |
| #####################################
 | |
| class MultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
 | |
| 
 | |
|         self.d_out = d_out
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | |
| 
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape
 | |
| 
 | |
|         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         # We implicitly split the matrix by adding a `num_heads` dimension
 | |
|         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | |
|         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | |
|         keys = keys.transpose(1, 2)
 | |
|         queries = queries.transpose(1, 2)
 | |
|         values = values.transpose(1, 2)
 | |
| 
 | |
|         # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | |
|         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | |
| 
 | |
|         # Original mask truncated to the number of tokens and converted to boolean
 | |
|         mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | |
| 
 | |
|         # Use the mask to fill attention scores
 | |
|         attn_scores.masked_fill_(mask_bool, -torch.inf)
 | |
| 
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
|         attn_weights = self.dropout(attn_weights)
 | |
| 
 | |
|         # Shape: (b, num_tokens, num_heads, head_dim)
 | |
|         context_vec = (attn_weights @ values).transpose(1, 2)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.reshape(b, num_tokens, self.d_out)
 | |
|         context_vec = self.out_proj(context_vec)  # optional projection
 | |
| 
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 4
 | |
| #####################################
 | |
| class LayerNorm(nn.Module):
 | |
|     def __init__(self, emb_dim):
 | |
|         super().__init__()
 | |
|         self.eps = 1e-5
 | |
|         self.scale = nn.Parameter(torch.ones(emb_dim))
 | |
|         self.shift = nn.Parameter(torch.zeros(emb_dim))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         mean = x.mean(dim=-1, keepdim=True)
 | |
|         var = x.var(dim=-1, keepdim=True, unbiased=False)
 | |
|         norm_x = (x - mean) / torch.sqrt(var + self.eps)
 | |
|         return self.scale * norm_x + self.shift
 | |
| 
 | |
| 
 | |
| class GELU(nn.Module):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return 0.5 * x * (1 + torch.tanh(
 | |
|             torch.sqrt(torch.tensor(2.0 / torch.pi)) *
 | |
|             (x + 0.044715 * torch.pow(x, 3))
 | |
|         ))
 | |
| 
 | |
| 
 | |
| class FeedForward(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.layers = nn.Sequential(
 | |
|             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | |
|             GELU(),
 | |
|             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.layers(x)
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.att = MultiHeadAttention(
 | |
|             d_in=cfg["emb_dim"],
 | |
|             d_out=cfg["emb_dim"],
 | |
|             context_length=cfg["context_length"],
 | |
|             num_heads=cfg["n_heads"],
 | |
|             dropout=cfg["drop_rate"],
 | |
|             qkv_bias=cfg["qkv_bias"])
 | |
|         self.ff = FeedForward(cfg)
 | |
|         self.norm1 = LayerNorm(cfg["emb_dim"])
 | |
|         self.norm2 = LayerNorm(cfg["emb_dim"])
 | |
|         self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # Shortcut connection for attention block
 | |
|         shortcut = x
 | |
|         x = self.norm1(x)
 | |
|         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         # Shortcut connection for feed-forward block
 | |
|         shortcut = x
 | |
|         x = self.norm2(x)
 | |
|         x = self.ff(x)
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GPTModel(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | |
|         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 | |
|         self.drop_emb = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|         self.trf_blocks = nn.Sequential(
 | |
|             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
 | |
| 
 | |
|         self.final_norm = LayerNorm(cfg["emb_dim"])
 | |
|         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | |
| 
 | |
|     def forward(self, in_idx):
 | |
|         batch_size, seq_len = in_idx.shape
 | |
|         tok_embeds = self.tok_emb(in_idx)
 | |
|         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | |
|         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_emb(x)
 | |
|         x = self.trf_blocks(x)
 | |
|         x = self.final_norm(x)
 | |
|         logits = self.out_head(x)
 | |
|         return logits
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 5
 | |
| #####################################
 | |
| def text_to_token_ids(text, tokenizer):
 | |
|     encoded = tokenizer.encode(text)
 | |
|     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
 | |
|     return encoded_tensor
 | |
| 
 | |
| 
 | |
| def token_ids_to_text(token_ids, tokenizer):
 | |
|     flat = token_ids.squeeze(0)  # remove batch dimension
 | |
|     return tokenizer.decode(flat.tolist())
 | |
| 
 | |
| 
 | |
| def download_and_load_gpt2(model_size, models_dir):
 | |
|     # Validate model size
 | |
|     allowed_sizes = ("124M", "355M", "774M", "1558M")
 | |
|     if model_size not in allowed_sizes:
 | |
|         raise ValueError(f"Model size not in {allowed_sizes}")
 | |
| 
 | |
|     # Define paths
 | |
|     model_dir = os.path.join(models_dir, model_size)
 | |
|     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
 | |
|     filenames = [
 | |
|         "checkpoint", "encoder.json", "hparams.json",
 | |
|         "model.ckpt.data-00000-of-00001", "model.ckpt.index",
 | |
|         "model.ckpt.meta", "vocab.bpe"
 | |
|     ]
 | |
| 
 | |
|     # Download files
 | |
|     os.makedirs(model_dir, exist_ok=True)
 | |
|     for filename in filenames:
 | |
|         file_url = os.path.join(base_url, model_size, filename)
 | |
|         file_path = os.path.join(model_dir, filename)
 | |
|         download_file(file_url, file_path)
 | |
| 
 | |
|     # Load settings and params
 | |
|     tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
 | |
|     settings = json.load(open(os.path.join(model_dir, "hparams.json")))
 | |
|     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
 | |
| 
 | |
|     return settings, params
 | |
| 
 | |
| 
 | |
| def download_file(url, destination):
 | |
|     # Send a GET request to download the file
 | |
|     with urllib.request.urlopen(url) as response:
 | |
|         # Get the total file size from headers, defaulting to 0 if not present
 | |
|         file_size = int(response.headers.get("Content-Length", 0))
 | |
| 
 | |
|         # Check if file exists and has the same size
 | |
|         if os.path.exists(destination):
 | |
|             file_size_local = os.path.getsize(destination)
 | |
|             if file_size == file_size_local:
 | |
|                 print(f"File already exists and is up-to-date: {destination}")
 | |
|                 return
 | |
| 
 | |
|         # Define the block size for reading the file
 | |
|         block_size = 1024  # 1 Kilobyte
 | |
| 
 | |
|         # Initialize the progress bar with total file size
 | |
|         progress_bar_description = os.path.basename(url)  # Extract filename from URL
 | |
|         with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
 | |
|             # Open the destination file in binary write mode
 | |
|             with open(destination, "wb") as file:
 | |
|                 # Read the file in chunks and write to destination
 | |
|                 while True:
 | |
|                     chunk = response.read(block_size)
 | |
|                     if not chunk:
 | |
|                         break
 | |
|                     file.write(chunk)
 | |
|                     progress_bar.update(len(chunk))  # Update progress bar
 | |
| 
 | |
| 
 | |
| def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
 | |
|     # Initialize parameters dictionary with empty blocks for each layer
 | |
|     params = {"blocks": [{} for _ in range(settings["n_layer"])]}
 | |
| 
 | |
|     # Iterate over each variable in the checkpoint
 | |
|     for name, _ in tf.train.list_variables(ckpt_path):
 | |
|         # Load the variable and remove singleton dimensions
 | |
|         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
 | |
| 
 | |
|         # Process the variable name to extract relevant parts
 | |
|         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix
 | |
| 
 | |
|         # Identify the target dictionary for the variable
 | |
|         target_dict = params
 | |
|         if variable_name_parts[0].startswith("h"):
 | |
|             layer_number = int(variable_name_parts[0][1:])
 | |
|             target_dict = params["blocks"][layer_number]
 | |
| 
 | |
|         # Recursively access or create nested dictionaries
 | |
|         for key in variable_name_parts[1:-1]:
 | |
|             target_dict = target_dict.setdefault(key, {})
 | |
| 
 | |
|         # Assign the variable array to the last key
 | |
|         last_key = variable_name_parts[-1]
 | |
|         target_dict[last_key] = variable_array
 | |
| 
 | |
|     return params
 | |
| 
 | |
| 
 | |
| def assign(left, right):
 | |
|     if left.shape != right.shape:
 | |
|         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
 | |
|     return torch.nn.Parameter(torch.tensor(right))
 | |
| 
 | |
| 
 | |
| def load_weights_into_gpt(gpt, params):
 | |
|     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
 | |
|     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
 | |
| 
 | |
|     for b in range(len(params["blocks"])):
 | |
|         q_w, k_w, v_w = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.weight, q_w.T)
 | |
|         gpt.trf_blocks[b].att.W_key.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.weight, k_w.T)
 | |
|         gpt.trf_blocks[b].att.W_value.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.weight, v_w.T)
 | |
| 
 | |
|         q_b, k_b, v_b = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.bias, q_b)
 | |
|         gpt.trf_blocks[b].att.W_key.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.bias, k_b)
 | |
|         gpt.trf_blocks[b].att.W_value.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.bias, v_b)
 | |
| 
 | |
|         gpt.trf_blocks[b].att.out_proj.weight = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.weight,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].att.out_proj.bias = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.bias,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].ff.layers[0].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].weight,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[0].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].bias,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["b"])
 | |
|         gpt.trf_blocks[b].ff.layers[2].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].weight,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[2].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].bias,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].norm1.scale = assign(
 | |
|             gpt.trf_blocks[b].norm1.scale,
 | |
|             params["blocks"][b]["ln_1"]["g"])
 | |
|         gpt.trf_blocks[b].norm1.shift = assign(
 | |
|             gpt.trf_blocks[b].norm1.shift,
 | |
|             params["blocks"][b]["ln_1"]["b"])
 | |
|         gpt.trf_blocks[b].norm2.scale = assign(
 | |
|             gpt.trf_blocks[b].norm2.scale,
 | |
|             params["blocks"][b]["ln_2"]["g"])
 | |
|         gpt.trf_blocks[b].norm2.shift = assign(
 | |
|             gpt.trf_blocks[b].norm2.shift,
 | |
|             params["blocks"][b]["ln_2"]["b"])
 | |
| 
 | |
|     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
 | |
|     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
 | |
|     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
 | |
| 
 | |
| 
 | |
| def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
 | |
| 
 | |
|     # For-loop is the same as before: Get logits, and only focus on last time step
 | |
|     for _ in range(max_new_tokens):
 | |
|         idx_cond = idx[:, -context_size:]
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # New: Filter logits with top_k sampling
 | |
|         if top_k is not None:
 | |
|             # Keep only top_k values
 | |
|             top_logits, _ = torch.topk(logits, top_k)
 | |
|             min_val = top_logits[:, -1]
 | |
|             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
 | |
| 
 | |
|         # New: Apply temperature scaling
 | |
|         if temperature > 0.0:
 | |
|             logits = logits / temperature
 | |
| 
 | |
|             # Apply softmax to get probabilities
 | |
|             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)
 | |
| 
 | |
|             # Sample from the distribution
 | |
|             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)
 | |
| 
 | |
|         # Otherwise same as before: get idx of the vocab entry with the highest logits value
 | |
|         else:
 | |
|             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)
 | |
| 
 | |
|         if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
 | |
|             break
 | |
| 
 | |
|         # Same as before: append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)
 | |
| 
 | |
|     return idx
 | 
