mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-30 17:29:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			218 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| from .ch03 import MultiHeadAttention, PyTorchMultiHeadAttention
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| 
 | |
| class LayerNorm(nn.Module):
 | |
|     def __init__(self, emb_dim):
 | |
|         super().__init__()
 | |
|         self.eps = 1e-5
 | |
|         self.scale = nn.Parameter(torch.ones(emb_dim))
 | |
|         self.shift = nn.Parameter(torch.zeros(emb_dim))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         mean = x.mean(dim=-1, keepdim=True)
 | |
|         var = x.var(dim=-1, keepdim=True, unbiased=False)
 | |
|         norm_x = (x - mean) / torch.sqrt(var + self.eps)
 | |
|         return self.scale * norm_x + self.shift
 | |
| 
 | |
| 
 | |
| class GELU(nn.Module):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return 0.5 * x * (1 + torch.tanh(
 | |
|             torch.sqrt(torch.tensor(2.0 / torch.pi)) *
 | |
|             (x + 0.044715 * torch.pow(x, 3))
 | |
|         ))
 | |
| 
 | |
| 
 | |
| class FeedForward(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.layers = nn.Sequential(
 | |
|             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | |
|             GELU(),
 | |
|             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.layers(x)
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.att = MultiHeadAttention(
 | |
|             d_in=cfg["emb_dim"],
 | |
|             d_out=cfg["emb_dim"],
 | |
|             context_length=cfg["context_length"],
 | |
|             num_heads=cfg["n_heads"],
 | |
|             dropout=cfg["drop_rate"],
 | |
|             qkv_bias=cfg["qkv_bias"])
 | |
|         self.ff = FeedForward(cfg)
 | |
|         self.norm1 = LayerNorm(cfg["emb_dim"])
 | |
|         self.norm2 = LayerNorm(cfg["emb_dim"])
 | |
|         self.drop_resid = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # Shortcut connection for attention block
 | |
|         shortcut = x
 | |
|         x = self.norm1(x)
 | |
|         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_resid(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         # Shortcut connection for feed-forward block
 | |
|         shortcut = x
 | |
|         x = self.norm2(x)
 | |
|         x = self.ff(x)
 | |
|         x = self.drop_resid(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GPTModel(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | |
|         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 | |
|         self.drop_emb = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|         self.trf_blocks = nn.Sequential(
 | |
|             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
 | |
| 
 | |
|         self.final_norm = LayerNorm(cfg["emb_dim"])
 | |
|         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | |
| 
 | |
|     def forward(self, in_idx):
 | |
|         batch_size, seq_len = in_idx.shape
 | |
|         tok_embeds = self.tok_emb(in_idx)
 | |
|         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | |
|         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_emb(x)
 | |
|         x = self.trf_blocks(x)
 | |
|         x = self.final_norm(x)
 | |
|         logits = self.out_head(x)
 | |
|         return logits
 | |
| 
 | |
| 
 | |
| def generate_text_simple(model, idx, max_new_tokens, context_size):
 | |
|     # idx is (B, T) array of indices in the current context
 | |
|     for _ in range(max_new_tokens):
 | |
| 
 | |
|         # Crop current context if it exceeds the supported context size
 | |
|         # E.g., if LLM supports only 5 tokens, and the context size is 10
 | |
|         # then only the last 5 tokens are used as context
 | |
|         idx_cond = idx[:, -context_size:]
 | |
| 
 | |
|         # Get the predictions
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
| 
 | |
|         # Focus only on the last time step
 | |
|         # (batch, n_token, vocab_size) becomes (batch, vocab_size)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # Get the idx of the vocab entry with the highest logits value
 | |
|         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)
 | |
| 
 | |
|         # Append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)
 | |
| 
 | |
|     return idx
 | |
| 
 | |
| ######################
 | |
| # Bonus
 | |
| ######################
 | |
| 
 | |
| 
 | |
| class FeedForwardFast(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.layers = nn.Sequential(
 | |
|             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | |
|             nn.GELU(approximate="tanh"),
 | |
|             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.layers(x)
 | |
| 
 | |
| 
 | |
| class TransformerBlockFast(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.att = PyTorchMultiHeadAttention(
 | |
|             d_in=cfg["emb_dim"],
 | |
|             d_out=cfg["emb_dim"],
 | |
|             num_heads=cfg["n_heads"],
 | |
|             dropout=cfg["drop_rate"],
 | |
|             qkv_bias=cfg["qkv_bias"])
 | |
|         self.ff = FeedForwardFast(cfg)
 | |
|         self.norm1 = nn.LayerNorm(cfg["emb_dim"])
 | |
|         self.norm2 = nn.LayerNorm(cfg["emb_dim"])
 | |
|         self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # Shortcut connection for attention block
 | |
|         shortcut = x
 | |
|         x = self.norm1(x)
 | |
|         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         # Shortcut connection for feed-forward block
 | |
|         shortcut = x
 | |
|         x = self.norm2(x)
 | |
|         x = self.ff(x)
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GPTModelFast(nn.Module):
 | |
|     """
 | |
|     A faster variant of GPTModel optimized for training speed.
 | |
| 
 | |
|     This version is only marginally faster on CPU (~1.02x) but significantly
 | |
|     faster on GPU (~2.05x) during training, thanks to optimized CUDA kernels
 | |
|     and FlashAttention support.
 | |
| 
 | |
|     Key differences from the original GPTModel:
 | |
|     1. Uses PyTorch's built-in LayerNorm instead of a custom implementation.
 | |
|     2. Uses PyTorch's built-in GELU instead of a custom implementation.
 | |
|     3. Uses PyTorch's scaled_dot_product_attention instead of a custom MultiHeadAttention.
 | |
|     4. Automatically enables FlashAttention on compatible GPUs.
 | |
|     """
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | |
|         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 | |
|         self.drop_emb = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|         self.trf_blocks = nn.Sequential(
 | |
|             *[TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])])
 | |
| 
 | |
|         self.final_norm = nn.LayerNorm(cfg["emb_dim"])
 | |
|         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | |
| 
 | |
|     def forward(self, in_idx):
 | |
|         batch_size, seq_len = in_idx.shape
 | |
|         tok_embeds = self.tok_emb(in_idx)
 | |
|         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | |
|         x = tok_embeds + pos_embeds
 | |
|         x = self.drop_emb(x)
 | |
|         x = self.trf_blocks(x)
 | |
|         x = self.final_norm(x)
 | |
|         logits = self.out_head(x)
 | |
|         return logits
 | 
