mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 11:50:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			581 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			581 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | 
						|
# Source for "Build a Large Language Model From Scratch"
 | 
						|
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | 
						|
# Code: https://github.com/rasbt/LLMs-from-scratch
 | 
						|
 | 
						|
import argparse
 | 
						|
import math
 | 
						|
import os
 | 
						|
from pathlib import Path
 | 
						|
import time
 | 
						|
import urllib.request
 | 
						|
import zipfile
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import tiktoken
 | 
						|
import torch
 | 
						|
from torch.utils.data import DataLoader
 | 
						|
from torch.utils.data import Dataset
 | 
						|
 | 
						|
from gpt_download import download_and_load_gpt2
 | 
						|
from previous_chapters import GPTModel, load_weights_into_gpt
 | 
						|
 | 
						|
 | 
						|
class LoRALayer(torch.nn.Module):
 | 
						|
    def __init__(self, in_dim, out_dim, rank, alpha):
 | 
						|
        super().__init__()
 | 
						|
        self.A = torch.nn.Parameter(torch.empty(in_dim, rank))
 | 
						|
        torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5))
 | 
						|
        self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
 | 
						|
        self.alpha = alpha
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        x = self.alpha * (x @ self.A @ self.B)
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class LinearWithLoRA(torch.nn.Module):
 | 
						|
    def __init__(self, linear, rank, alpha):
 | 
						|
        super().__init__()
 | 
						|
        self.linear = linear
 | 
						|
        self.lora = LoRALayer(
 | 
						|
            linear.in_features, linear.out_features, rank, alpha
 | 
						|
        )
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        return self.linear(x) + self.lora(x)
 | 
						|
 | 
						|
 | 
						|
class SpamDataset(Dataset):
 | 
						|
    def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, no_padding=False):
 | 
						|
        self.data = pd.read_csv(csv_file)
 | 
						|
        self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
 | 
						|
 | 
						|
        # Pre-tokenize texts
 | 
						|
        self.encoded_texts = [
 | 
						|
            tokenizer.encode(text)[:self.max_length]
 | 
						|
            for text in self.data["Text"]
 | 
						|
        ]
 | 
						|
 | 
						|
        if not no_padding:
 | 
						|
            # Pad sequences to the longest sequence
 | 
						|
            self.encoded_texts = [
 | 
						|
                et + [pad_token_id] * (self.max_length - len(et))
 | 
						|
                for et in self.encoded_texts
 | 
						|
            ]
 | 
						|
 | 
						|
    def __getitem__(self, index):
 | 
						|
        encoded = self.encoded_texts[index]
 | 
						|
        label = self.data.iloc[index]["Label"]
 | 
						|
        return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        return len(self.data)
 | 
						|
 | 
						|
    def _longest_encoded_length(self, tokenizer):
 | 
						|
        max_length = 0
 | 
						|
        for text in self.data["Text"]:
 | 
						|
            encoded_length = len(tokenizer.encode(text))
 | 
						|
            if encoded_length > max_length:
 | 
						|
                max_length = encoded_length
 | 
						|
        return max_length
 | 
						|
 | 
						|
 | 
						|
def download_and_unzip(url, zip_path, extract_to, new_file_path):
 | 
						|
    if new_file_path.exists():
 | 
						|
        print(f"{new_file_path} already exists. Skipping download and extraction.")
 | 
						|
        return
 | 
						|
 | 
						|
    # Downloading the file
 | 
						|
    with urllib.request.urlopen(url) as response:
 | 
						|
        with open(zip_path, "wb") as out_file:
 | 
						|
            out_file.write(response.read())
 | 
						|
 | 
						|
    # Unzipping the file
 | 
						|
    with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
						|
        zip_ref.extractall(extract_to)
 | 
						|
 | 
						|
    # Renaming the file to indicate its format
 | 
						|
    original_file = Path(extract_to) / "SMSSpamCollection"
 | 
						|
    os.rename(original_file, new_file_path)
 | 
						|
    print(f"File downloaded and saved as {new_file_path}")
 | 
						|
 | 
						|
 | 
						|
def random_split(df, train_frac, validation_frac):
 | 
						|
    # Shuffle the entire DataFrame
 | 
						|
    df = df.sample(frac=1, random_state=123).reset_index(drop=True)
 | 
						|
 | 
						|
    # Calculate split indices
 | 
						|
    train_end = int(len(df) * train_frac)
 | 
						|
    validation_end = train_end + int(len(df) * validation_frac)
 | 
						|
 | 
						|
    # Split the DataFrame
 | 
						|
    train_df = df[:train_end]
 | 
						|
    validation_df = df[train_end:validation_end]
 | 
						|
    test_df = df[validation_end:]
 | 
						|
 | 
						|
    return train_df, validation_df, test_df
 | 
						|
 | 
						|
 | 
						|
def create_dataset_csvs(data_file_path):
 | 
						|
    df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
 | 
						|
 | 
						|
    # Create balanced dataset
 | 
						|
    n_spam = df[df["Label"] == "spam"].shape[0]
 | 
						|
    ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
 | 
						|
    balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
 | 
						|
    balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
 | 
						|
    balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
 | 
						|
 | 
						|
    # Sample and save csv files
 | 
						|
    train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
 | 
						|
    train_df.to_csv("train.csv", index=None)
 | 
						|
    validation_df.to_csv("validation.csv", index=None)
 | 
						|
    test_df.to_csv("test.csv", index=None)
 | 
						|
 | 
						|
 | 
						|
def instantiate_model(choose_model, load_weights):
 | 
						|
 | 
						|
    BASE_CONFIG = {
 | 
						|
        "vocab_size": 50257,     # Vocabulary size
 | 
						|
        "context_length": 1024,  # Context length
 | 
						|
        "drop_rate": 0.0,        # Dropout rate
 | 
						|
        "qkv_bias": True         # Query-key-value bias
 | 
						|
    }
 | 
						|
 | 
						|
    model_configs = {
 | 
						|
        "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
 | 
						|
        "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
 | 
						|
        "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
 | 
						|
        "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
 | 
						|
    }
 | 
						|
 | 
						|
    BASE_CONFIG.update(model_configs[choose_model])
 | 
						|
 | 
						|
    if not load_weights:
 | 
						|
        torch.manual_seed(123)
 | 
						|
    model = GPTModel(BASE_CONFIG, disable_causal_mask=args.disable_causal_mask)
 | 
						|
 | 
						|
    if load_weights:
 | 
						|
        model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
 | 
						|
        settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
 | 
						|
        load_weights_into_gpt(model, params)
 | 
						|
 | 
						|
    model.eval()
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def calc_loss_batch(input_batch, target_batch, model, device,
 | 
						|
                    trainable_token=-1, ignore_index=-100):
 | 
						|
    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | 
						|
    logits = model(input_batch)[:, trainable_token, :]  # Logits of last output token
 | 
						|
    loss = torch.nn.functional.cross_entropy(logits, target_batch, ignore_index=ignore_index)
 | 
						|
    return loss
 | 
						|
 | 
						|
 | 
						|
def calc_loss_loader(data_loader, model, device,
 | 
						|
                     num_batches=None, trainable_token=-1, ignore_index=-100):
 | 
						|
    total_loss = 0.
 | 
						|
    if len(data_loader) == 0:
 | 
						|
        return float("nan")
 | 
						|
    elif num_batches is None:
 | 
						|
        num_batches = len(data_loader)
 | 
						|
    else:
 | 
						|
        # Reduce the number of batches to match the total number of batches in the data loader
 | 
						|
        # if num_batches exceeds the number of batches in the data loader
 | 
						|
        num_batches = min(num_batches, len(data_loader))
 | 
						|
    for i, (input_batch, target_batch) in enumerate(data_loader):
 | 
						|
        if i < num_batches:
 | 
						|
            loss = calc_loss_batch(
 | 
						|
                input_batch, target_batch, model, device,
 | 
						|
                trainable_token=trainable_token, ignore_index=ignore_index
 | 
						|
            )
 | 
						|
            total_loss += loss.item()
 | 
						|
        else:
 | 
						|
            break
 | 
						|
    return total_loss / num_batches
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()  # Disable gradient tracking for efficiency
 | 
						|
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
 | 
						|
    model.eval()
 | 
						|
    correct_predictions, num_examples = 0, 0
 | 
						|
 | 
						|
    if num_batches is None:
 | 
						|
        num_batches = len(data_loader)
 | 
						|
    else:
 | 
						|
        num_batches = min(num_batches, len(data_loader))
 | 
						|
    for i, (input_batch, target_batch) in enumerate(data_loader):
 | 
						|
        if i < num_batches:
 | 
						|
            input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | 
						|
            logits = model(input_batch)[:, trainable_token, :]  # Logits of last output token
 | 
						|
            predicted_labels = torch.argmax(logits, dim=-1)
 | 
						|
 | 
						|
            num_examples += predicted_labels.shape[0]
 | 
						|
            correct_predictions += (predicted_labels == target_batch).sum().item()
 | 
						|
        else:
 | 
						|
            break
 | 
						|
    return correct_predictions / num_examples
 | 
						|
 | 
						|
 | 
						|
def evaluate_model(model, train_loader, val_loader, device,
 | 
						|
                   eval_iter, trainable_token=-1, ignore_index=-100):
 | 
						|
    model.eval()
 | 
						|
    with torch.no_grad():
 | 
						|
        train_loss = calc_loss_loader(
 | 
						|
            train_loader, model, device, num_batches=eval_iter,
 | 
						|
            trainable_token=trainable_token, ignore_index=ignore_index
 | 
						|
        )
 | 
						|
        val_loss = calc_loss_loader(
 | 
						|
            val_loader, model, device, num_batches=eval_iter,
 | 
						|
            trainable_token=trainable_token, ignore_index=ignore_index
 | 
						|
        )
 | 
						|
    model.train()
 | 
						|
    return train_loss, val_loss
 | 
						|
 | 
						|
 | 
						|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | 
						|
                            eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1,
 | 
						|
                            accumulation_steps=1, ignore_index=-100):
 | 
						|
    # Initialize lists to track losses and tokens seen
 | 
						|
    train_losses, val_losses, train_accs, val_accs = [], [], [], []
 | 
						|
    examples_seen, global_step = 0, -1
 | 
						|
 | 
						|
    # Main training loop
 | 
						|
    for epoch in range(num_epochs):
 | 
						|
        model.train()  # Set model to training mode
 | 
						|
 | 
						|
        for batch_idx, (input_batch, target_batch) in enumerate(train_loader):
 | 
						|
            loss = calc_loss_batch(
 | 
						|
                input_batch, target_batch, model, device,
 | 
						|
                trainable_token=trainable_token, ignore_index=ignore_index
 | 
						|
            )
 | 
						|
 | 
						|
            # Use gradient accumulation if accumulation_steps > 1
 | 
						|
            # See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html
 | 
						|
            # for an explanation
 | 
						|
            loss /= accumulation_steps
 | 
						|
 | 
						|
            loss.backward()  # Calculate loss gradients
 | 
						|
 | 
						|
            # Use gradient accumulation if accumulation_steps > 1
 | 
						|
            if batch_idx % accumulation_steps == 0:
 | 
						|
                optimizer.step()  # Update model weights using loss gradients
 | 
						|
                optimizer.zero_grad()  # Reset loss gradients from previous epoch
 | 
						|
 | 
						|
            examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
 | 
						|
            global_step += 1
 | 
						|
 | 
						|
            # Optional evaluation step
 | 
						|
            if global_step % eval_freq == 0:
 | 
						|
                train_loss, val_loss = evaluate_model(
 | 
						|
                    model, train_loader, val_loader, device, eval_iter,
 | 
						|
                    trainable_token=trainable_token, ignore_index=ignore_index
 | 
						|
                )
 | 
						|
                train_losses.append(train_loss)
 | 
						|
                val_losses.append(val_loss)
 | 
						|
                print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | 
						|
                      f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | 
						|
 | 
						|
            if max_steps is not None and global_step > max_steps:
 | 
						|
                break
 | 
						|
 | 
						|
        # New: Calculate accuracy after each epoch
 | 
						|
        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
 | 
						|
        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
 | 
						|
        print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
 | 
						|
        print(f"Validation accuracy: {val_accuracy*100:.2f}%")
 | 
						|
        train_accs.append(train_accuracy)
 | 
						|
        val_accs.append(val_accuracy)
 | 
						|
 | 
						|
        if max_steps is not None and global_step > max_steps:
 | 
						|
            break
 | 
						|
 | 
						|
    return train_losses, val_losses, train_accs, val_accs, examples_seen
 | 
						|
 | 
						|
 | 
						|
def replace_linear_with_lora(model, rank, alpha):
 | 
						|
    for name, module in model.named_children():
 | 
						|
        if isinstance(module, torch.nn.Linear):
 | 
						|
            # Replace the Linear layer with LinearWithLoRA
 | 
						|
            setattr(model, name, LinearWithLoRA(module, rank, alpha))
 | 
						|
        else:
 | 
						|
            # Recursively apply the same function to child modules
 | 
						|
            replace_linear_with_lora(module, rank, alpha)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument(
 | 
						|
        "--model_size",
 | 
						|
        type=str,
 | 
						|
        default="gpt2-small (124M)",
 | 
						|
        help=(
 | 
						|
            "Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
 | 
						|
            " 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--weights",
 | 
						|
        type=str,
 | 
						|
        default="pretrained",
 | 
						|
        help=(
 | 
						|
            "Whether to use 'pretrained' or 'random' weights."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--trainable_layers",
 | 
						|
        type=str,
 | 
						|
        default="last_block",
 | 
						|
        help=(
 | 
						|
            "Which layers to train. Options: 'all', 'last_block', 'last_two_blocks', 'last_layer', 'lora'."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--trainable_token",
 | 
						|
        type=str,
 | 
						|
        default="last",
 | 
						|
        help=(
 | 
						|
            "Which token to train. Options: 'first', 'last'."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--context_length",
 | 
						|
        type=str,
 | 
						|
        default="longest_training_example",
 | 
						|
        help=(
 | 
						|
            "The context length of the data inputs."
 | 
						|
            "Options: 'longest_training_example', 'model_context_length' or integer value."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--lora_rank",
 | 
						|
        type=int,
 | 
						|
        default=8,
 | 
						|
        help=(
 | 
						|
            "The LoRA rank when choosing `--trainable_layers lora`"
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--lora_alpha",
 | 
						|
        type=int,
 | 
						|
        default=8,
 | 
						|
        help=(
 | 
						|
            "The LoRA alpha value when choosing `--trainable_layers lora`"
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--no_padding",
 | 
						|
        action='store_true',
 | 
						|
        default=False,
 | 
						|
        help=(
 | 
						|
            "Disable padding, which means each example may have a different lenght."
 | 
						|
            " This requires setting `--batch_size 1`."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--num_epochs",
 | 
						|
        type=int,
 | 
						|
        default=5,
 | 
						|
        help=(
 | 
						|
            "Number of training epochs."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--batch_size",
 | 
						|
        type=int,
 | 
						|
        default=8,
 | 
						|
        help=(
 | 
						|
            "The batch size used for training."
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    parser.add_argument(
 | 
						|
        "--accumulation_steps",
 | 
						|
        type=int,
 | 
						|
        default=1,
 | 
						|
        help=(
 | 
						|
            "Accumulation steps to allow for gradient accumulation."
 | 
						|
            " See https://sebastianraschka.com/blog/2023/llm-grad-accumulation.html for explanation."
 | 
						|
            " For example, setting `batch_size=8` and `accumulation_steps=1` compute the exact same"
 | 
						|
            " loss and weight updates as setting `batch_size=1` and `accumulation_steps=8`, however,"
 | 
						|
            " the latter setting uses more iterations."
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    parser.add_argument(
 | 
						|
        "--disable_causal_mask",
 | 
						|
        action='store_true',
 | 
						|
        default=False,
 | 
						|
        help=(
 | 
						|
            "Disables the causal attention mask."
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    parser.add_argument(
 | 
						|
        "--ignore_index",
 | 
						|
        type=int,
 | 
						|
        default=-100,
 | 
						|
        help=(
 | 
						|
            "Sets the `ignore_index` in the cross entropy loss."
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    if args.trainable_token == "first":
 | 
						|
        args.trainable_token = 0
 | 
						|
    elif args.trainable_token == "last":
 | 
						|
        args.trainable_token = -1
 | 
						|
    else:
 | 
						|
        raise ValueError("Invalid --trainable_token argument")
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Load model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    if args.weights == "pretrained":
 | 
						|
        load_weights = True
 | 
						|
    elif args.weights == "random":
 | 
						|
        load_weights = False
 | 
						|
    else:
 | 
						|
        raise ValueError("Invalid --weights argument.")
 | 
						|
 | 
						|
    model = instantiate_model(args.model_size, load_weights)
 | 
						|
    for param in model.parameters():
 | 
						|
        param.requires_grad = False
 | 
						|
 | 
						|
    if args.model_size == "gpt2-small (124M)":
 | 
						|
        in_features = 768
 | 
						|
    elif args.model_size == "gpt2-medium (355M)":
 | 
						|
        in_features = 1024
 | 
						|
    elif args.model_size == "gpt2-large (774M)":
 | 
						|
        in_features = 1280
 | 
						|
    elif args.model_size == "gpt2-xl (1558M)":
 | 
						|
        in_features = 1600
 | 
						|
    else:
 | 
						|
        raise ValueError("Invalid --model_size argument")
 | 
						|
 | 
						|
    torch.manual_seed(123)
 | 
						|
    model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
 | 
						|
 | 
						|
    if args.trainable_layers == "last_layer":
 | 
						|
        pass
 | 
						|
    elif args.trainable_layers == "last_block" or args.trainable_layers == "last_two_blocks":
 | 
						|
        for param in model.trf_blocks[-1].parameters():
 | 
						|
            param.requires_grad = True
 | 
						|
        for param in model.final_norm.parameters():
 | 
						|
            param.requires_grad = True
 | 
						|
        if args.trainable_layers == "last_two_blocks":
 | 
						|
            for param in model.trf_blocks[-2].parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
    elif args.trainable_layers == "all":
 | 
						|
        for param in model.parameters():
 | 
						|
            param.requires_grad = True
 | 
						|
    elif args.trainable_layers == "lora":
 | 
						|
        replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha)
 | 
						|
    else:
 | 
						|
        raise ValueError("Invalid --trainable_layers argument.")
 | 
						|
 | 
						|
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
						|
    model.to(device)
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Instantiate dataloaders
 | 
						|
    ###############################
 | 
						|
 | 
						|
    url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
 | 
						|
    zip_path = "sms_spam_collection.zip"
 | 
						|
    extract_to = "sms_spam_collection"
 | 
						|
    new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
 | 
						|
 | 
						|
    base_path = Path(".")
 | 
						|
    file_names = ["train.csv", "validation.csv", "test.csv"]
 | 
						|
    all_exist = all((base_path / file_name).exists() for file_name in file_names)
 | 
						|
 | 
						|
    if not all_exist:
 | 
						|
        download_and_unzip(url, zip_path, extract_to, new_file_path)
 | 
						|
        create_dataset_csvs(new_file_path)
 | 
						|
 | 
						|
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
						|
 | 
						|
    train_dataset = None
 | 
						|
 | 
						|
    if args.no_padding:
 | 
						|
        max_length = None
 | 
						|
 | 
						|
    else:
 | 
						|
        if args.context_length == "model_context_length":
 | 
						|
            max_length = model.pos_emb.weight.shape[0]
 | 
						|
        elif args.context_length == "longest_training_example":
 | 
						|
            train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer, no_padding=args.no_padding)
 | 
						|
            max_length = train_dataset.max_length
 | 
						|
        else:
 | 
						|
            try:
 | 
						|
                max_length = int(args.context_length)
 | 
						|
            except ValueError:
 | 
						|
                raise ValueError("Invalid --context_length argument")
 | 
						|
 | 
						|
    if train_dataset is None:
 | 
						|
        train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
 | 
						|
    val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
 | 
						|
    test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer, no_padding=args.no_padding)
 | 
						|
 | 
						|
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
						|
 | 
						|
    num_workers = 0
 | 
						|
 | 
						|
    train_loader = DataLoader(
 | 
						|
        dataset=train_dataset,
 | 
						|
        batch_size=args.batch_size,
 | 
						|
        shuffle=True,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=True,
 | 
						|
    )
 | 
						|
 | 
						|
    val_loader = DataLoader(
 | 
						|
        dataset=val_dataset,
 | 
						|
        batch_size=args.batch_size,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=False,
 | 
						|
    )
 | 
						|
 | 
						|
    test_loader = DataLoader(
 | 
						|
        dataset=test_dataset,
 | 
						|
        batch_size=args.batch_size,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=False,
 | 
						|
    )
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Train model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    start_time = time.time()
 | 
						|
    torch.manual_seed(123)
 | 
						|
    optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
 | 
						|
 | 
						|
    train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
 | 
						|
        model, train_loader, val_loader, optimizer, device,
 | 
						|
        num_epochs=args.num_epochs, eval_freq=50, eval_iter=5,
 | 
						|
        tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token,
 | 
						|
        accumulation_steps=args.accumulation_steps
 | 
						|
    )
 | 
						|
 | 
						|
    end_time = time.time()
 | 
						|
    execution_time_minutes = (end_time - start_time) / 60
 | 
						|
    print(f"Training completed in {execution_time_minutes:.2f} minutes.")
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Evaluate model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
 | 
						|
    val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
 | 
						|
    test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
 | 
						|
 | 
						|
    print(f"Training accuracy: {train_accuracy*100:.2f}%")
 | 
						|
    print(f"Validation accuracy: {val_accuracy*100:.2f}%")
 | 
						|
    print(f"Test accuracy: {test_accuracy*100:.2f}%")
 |