mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-30 17:29:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			399 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "be16f748-e12a-44a9-ad2b-81e320efdac4",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "<table style=\"width:100%\">\n",
 | |
|     "<tr>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<font size=\"2\">\n",
 | |
|     "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
 | |
|     "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
 | |
|     "</font>\n",
 | |
|     "</td>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
 | |
|     "</td>\n",
 | |
|     "</tr>\n",
 | |
|     "</table>\n"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Multi-head Attention Plus Data Loading"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "ac9b5847-0515-45cd-87b0-46541f6a1f79",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "torch version: 2.2.2\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "# NBVAL_IGNORE_OUTPUT\n",
 | |
|     "from importlib.metadata import version\n",
 | |
|     "\n",
 | |
|     "print(\"torch version:\", version(\"torch\"))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "The complete chapter code is located in [ch03.ipynb](./ch03.ipynb).\n",
 | |
|     "\n",
 | |
|     "This notebook contains the main takeaway, multihead-attention implementation (plus the data loading pipeline from chapter 2)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "3f60dc93-281d-447e-941f-aede0c7ff7fc",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Data Loader from Chapter 2"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import tiktoken\n",
 | |
|     "import torch\n",
 | |
|     "import torch.nn as nn\n",
 | |
|     "from torch.utils.data import Dataset, DataLoader\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "class GPTDatasetV1(Dataset):\n",
 | |
|     "    def __init__(self, txt, tokenizer, max_length, stride):\n",
 | |
|     "        self.input_ids = []\n",
 | |
|     "        self.target_ids = []\n",
 | |
|     "\n",
 | |
|     "        # Tokenize the entire text\n",
 | |
|     "        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
 | |
|     "\n",
 | |
|     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
 | |
|     "        for i in range(0, len(token_ids) - max_length, stride):\n",
 | |
|     "            input_chunk = token_ids[i:i + max_length]\n",
 | |
|     "            target_chunk = token_ids[i + 1: i + max_length + 1]\n",
 | |
|     "            self.input_ids.append(torch.tensor(input_chunk))\n",
 | |
|     "            self.target_ids.append(torch.tensor(target_chunk))\n",
 | |
|     "\n",
 | |
|     "    def __len__(self):\n",
 | |
|     "        return len(self.input_ids)\n",
 | |
|     "\n",
 | |
|     "    def __getitem__(self, idx):\n",
 | |
|     "        return self.input_ids[idx], self.target_ids[idx]\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "def create_dataloader(txt, batch_size=4, max_length=256, stride=128, shuffle=True):\n",
 | |
|     "    # Initialize the tokenizer\n",
 | |
|     "    tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | |
|     "\n",
 | |
|     "    # Create dataset\n",
 | |
|     "    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
 | |
|     "\n",
 | |
|     "    # Create dataloader\n",
 | |
|     "    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)\n",
 | |
|     "\n",
 | |
|     "    return dataloader\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "with open(\"small-text-sample.txt\", \"r\", encoding=\"utf-8\") as f:\n",
 | |
|     "    raw_text = f.read()\n",
 | |
|     "\n",
 | |
|     "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | |
|     "encoded_text = tokenizer.encode(raw_text)\n",
 | |
|     "\n",
 | |
|     "vocab_size = 50257\n",
 | |
|     "output_dim = 256\n",
 | |
|     "max_len = 1024\n",
 | |
|     "context_length = max_len\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "token_embedding_layer = nn.Embedding(vocab_size, output_dim)\n",
 | |
|     "pos_embedding_layer = torch.nn.Embedding(context_length, output_dim)\n",
 | |
|     "\n",
 | |
|     "max_length = 4\n",
 | |
|     "dataloader = create_dataloader(raw_text, batch_size=8, max_length=max_length, stride=max_length)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "for batch in dataloader:\n",
 | |
|     "    x, y = batch\n",
 | |
|     "\n",
 | |
|     "    token_embeddings = token_embedding_layer(x)\n",
 | |
|     "    pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
 | |
|     "\n",
 | |
|     "    input_embeddings = token_embeddings + pos_embeddings\n",
 | |
|     "\n",
 | |
|     "    break"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "torch.Size([8, 4, 256])\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "print(input_embeddings.shape)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "bd298bf4-e320-40c1-9084-6526d07e6d5d",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# Multi-head Attention from Chapter 3"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "58b2297b-a001-49fd-994c-b1700866cd01",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Variant A: Simple implementation"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "a44e682d-1c3c-445d-85fa-b142f89f8503",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "class CausalSelfAttention(nn.Module):\n",
 | |
|     "\n",
 | |
|     "    def __init__(self, d_in, d_out, context_length, dropout, qkv_bias=False):\n",
 | |
|     "        super().__init__()\n",
 | |
|     "        self.d_out = d_out\n",
 | |
|     "        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.W_key   = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.dropout = nn.Dropout(dropout) # New\n",
 | |
|     "        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New\n",
 | |
|     "\n",
 | |
|     "    def forward(self, x):\n",
 | |
|     "        b, n_tokens, d_in = x.shape # New batch dimension b\n",
 | |
|     "        keys = self.W_key(x)\n",
 | |
|     "        queries = self.W_query(x)\n",
 | |
|     "        values = self.W_value(x)\n",
 | |
|     "\n",
 | |
|     "        attn_scores = queries @ keys.transpose(1, 2) # Changed transpose\n",
 | |
|     "        attn_scores.masked_fill_(  # New, _ ops are in-place\n",
 | |
|     "            self.mask.bool()[:n_tokens, :n_tokens], -torch.inf) \n",
 | |
|     "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
 | |
|     "        attn_weights = self.dropout(attn_weights) # New\n",
 | |
|     "\n",
 | |
|     "        context_vec = attn_weights @ values\n",
 | |
|     "        return context_vec\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "class MultiHeadAttentionWrapper(nn.Module):\n",
 | |
|     "    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):\n",
 | |
|     "        super().__init__()\n",
 | |
|     "        self.heads = nn.ModuleList(\n",
 | |
|     "            [CausalSelfAttention(d_in, d_out, context_length, dropout, qkv_bias) \n",
 | |
|     "             for _ in range(num_heads)]\n",
 | |
|     "        )\n",
 | |
|     "        self.out_proj = nn.Linear(d_out*num_heads, d_out*num_heads)\n",
 | |
|     "\n",
 | |
|     "    def forward(self, x):\n",
 | |
|     "        context_vec = torch.cat([head(x) for head in self.heads], dim=-1)\n",
 | |
|     "        return self.out_proj(context_vec)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "7898551e-f582-48ac-9f66-3632abe2a93f",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "context_vecs.shape: torch.Size([8, 4, 256])\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "torch.manual_seed(123)\n",
 | |
|     "\n",
 | |
|     "context_length = max_length\n",
 | |
|     "d_in = output_dim\n",
 | |
|     "\n",
 | |
|     "num_heads=2\n",
 | |
|     "d_out = d_in // num_heads\n",
 | |
|     "\n",
 | |
|     "mha = MultiHeadAttentionWrapper(d_in, d_out, context_length, 0.0, num_heads)\n",
 | |
|     "\n",
 | |
|     "batch = input_embeddings\n",
 | |
|     "context_vecs = mha(batch)\n",
 | |
|     "\n",
 | |
|     "print(\"context_vecs.shape:\", context_vecs.shape)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "1e288239-5146-424d-97fe-74024ae711b9",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Variant B: Alternative implementation"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "2773c09d-c136-4372-a2be-04b58d292842",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "class MultiHeadAttention(nn.Module):\n",
 | |
|     "    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):\n",
 | |
|     "        super().__init__()\n",
 | |
|     "        assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
 | |
|     "\n",
 | |
|     "        self.d_out = d_out\n",
 | |
|     "        self.num_heads = num_heads\n",
 | |
|     "        self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim\n",
 | |
|     "\n",
 | |
|     "        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
 | |
|     "        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs\n",
 | |
|     "        self.dropout = nn.Dropout(dropout)\n",
 | |
|     "        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
 | |
|     "\n",
 | |
|     "    def forward(self, x):\n",
 | |
|     "        b, num_tokens, d_in = x.shape\n",
 | |
|     "\n",
 | |
|     "        keys = self.W_key(x) # Shape: (b, num_tokens, d_out)\n",
 | |
|     "        queries = self.W_query(x)\n",
 | |
|     "        values = self.W_value(x)\n",
 | |
|     "\n",
 | |
|     "        # We implicitly split the matrix by adding a `num_heads` dimension\n",
 | |
|     "        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)\n",
 | |
|     "        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) \n",
 | |
|     "        values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
 | |
|     "        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
 | |
|     "\n",
 | |
|     "        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)\n",
 | |
|     "        keys = keys.transpose(1, 2)\n",
 | |
|     "        queries = queries.transpose(1, 2)\n",
 | |
|     "        values = values.transpose(1, 2)\n",
 | |
|     "\n",
 | |
|     "        # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
 | |
|     "        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head\n",
 | |
|     "        \n",
 | |
|     "        # Original mask truncated to the number of tokens and converted to boolean\n",
 | |
|     "        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
 | |
|     "\n",
 | |
|     "        # Use the mask to fill attention scores\n",
 | |
|     "        attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
 | |
|     "        \n",
 | |
|     "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
 | |
|     "        attn_weights = self.dropout(attn_weights)\n",
 | |
|     "\n",
 | |
|     "        # Shape: (b, num_tokens, num_heads, head_dim)\n",
 | |
|     "        context_vec = (attn_weights @ values).transpose(1, 2) \n",
 | |
|     "        \n",
 | |
|     "        # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
 | |
|     "        context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)\n",
 | |
|     "        context_vec = self.out_proj(context_vec) # optional projection\n",
 | |
|     "\n",
 | |
|     "        return context_vec"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "id": "779fdd04-0152-4308-af08-840800a7f395",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "context_vecs.shape: torch.Size([8, 4, 256])\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "torch.manual_seed(123)\n",
 | |
|     "\n",
 | |
|     "context_length = max_length\n",
 | |
|     "d_in = output_dim\n",
 | |
|     "d_out = d_in\n",
 | |
|     "\n",
 | |
|     "mha = MultiHeadAttention(d_in, d_out, context_length, 0.0, num_heads=2)\n",
 | |
|     "\n",
 | |
|     "batch = input_embeddings\n",
 | |
|     "context_vecs = mha(batch)\n",
 | |
|     "\n",
 | |
|     "print(\"context_vecs.shape:\", context_vecs.shape)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "f1d965a5-9b98-4554-8646-7ecd497874cb",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.4"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 | 
