mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-13 11:12:09 +00:00

* Fix bug in masking when kv cache is used. * add tests * dd tests * upd * add kv cache test to gh workflow * explicit mask slicing * upd --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
377 lines
13 KiB
Python
377 lines
13 KiB
Python
# This file collects all the relevant code that we covered thus far
|
|
# throughout Chapters 3-4.
|
|
# This file can be run as a standalone script.
|
|
|
|
import time
|
|
import tiktoken
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
#####################################
|
|
# Chapter 3
|
|
#####################################
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
|
super().__init__()
|
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
|
|
|
self.d_out = d_out
|
|
self.num_heads = num_heads
|
|
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
|
|
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
|
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.register_buffer(
|
|
"mask",
|
|
torch.triu(torch.ones(context_length, context_length), diagonal=1),
|
|
persistent=False
|
|
)
|
|
|
|
####################################################
|
|
# NEW
|
|
self.register_buffer("cache_k", None, persistent=False)
|
|
self.register_buffer("cache_v", None, persistent=False)
|
|
self.ptr_current_pos = 0
|
|
####################################################
|
|
|
|
def forward(self, x, use_cache=False):
|
|
b, num_tokens, d_in = x.shape
|
|
|
|
keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
|
values_new = self.W_value(x)
|
|
queries = self.W_query(x)
|
|
|
|
# We implicitly split the matrix by adding a `num_heads` dimension
|
|
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
|
keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
|
|
|
####################################################
|
|
# NEW
|
|
if use_cache:
|
|
if self.cache_k is None:
|
|
self.cache_k, self.cache_v = keys_new, values_new
|
|
else:
|
|
self.cache_k = torch.cat([self.cache_k, keys_new], dim=1)
|
|
self.cache_v = torch.cat([self.cache_v, values_new], dim=1)
|
|
keys, values = self.cache_k, self.cache_v
|
|
else:
|
|
keys, values = keys_new, values_new
|
|
####################################################
|
|
|
|
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
|
keys = keys.transpose(1, 2)
|
|
queries = queries.transpose(1, 2)
|
|
values = values.transpose(1, 2)
|
|
|
|
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
|
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
|
|
|
####################################################
|
|
# NEW
|
|
num_tokens_Q = queries.shape[-2]
|
|
num_tokens_K = keys.shape[-2]
|
|
if use_cache:
|
|
mask_bool = self.mask.bool()[
|
|
self.ptr_current_pos:self.ptr_current_pos + num_tokens_Q, :num_tokens_K
|
|
]
|
|
self.ptr_current_pos += num_tokens_Q
|
|
####################################################
|
|
# Original mask truncated to the number of tokens and converted to boolean
|
|
else:
|
|
mask_bool = self.mask.bool()[:num_tokens_Q, :num_tokens_K]
|
|
|
|
# Use the mask to fill attention scores
|
|
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
|
attn_weights = self.dropout(attn_weights)
|
|
|
|
# Shape: (b, num_tokens, num_heads, head_dim)
|
|
context_vec = (attn_weights @ values).transpose(1, 2)
|
|
|
|
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
|
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
|
context_vec = self.out_proj(context_vec) # optional projection
|
|
|
|
return context_vec
|
|
|
|
####################################################
|
|
# NEW
|
|
def reset_cache(self):
|
|
self.cache_k, self.cache_v = None, None
|
|
self.ptr_current_pos = 0
|
|
####################################################
|
|
|
|
|
|
#####################################
|
|
# Chapter 4
|
|
#####################################
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, emb_dim):
|
|
super().__init__()
|
|
self.eps = 1e-5
|
|
self.scale = nn.Parameter(torch.ones(emb_dim))
|
|
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
|
|
|
def forward(self, x):
|
|
mean = x.mean(dim=-1, keepdim=True)
|
|
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
|
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
|
return self.scale * norm_x + self.shift
|
|
|
|
|
|
class GELU(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return 0.5 * x * (1 + torch.tanh(
|
|
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
|
(x + 0.044715 * torch.pow(x, 3))
|
|
))
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
|
GELU(),
|
|
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.att = MultiHeadAttention(
|
|
d_in=cfg["emb_dim"],
|
|
d_out=cfg["emb_dim"],
|
|
context_length=cfg["context_length"],
|
|
num_heads=cfg["n_heads"],
|
|
dropout=cfg["drop_rate"],
|
|
qkv_bias=cfg["qkv_bias"])
|
|
self.ff = FeedForward(cfg)
|
|
self.norm1 = LayerNorm(cfg["emb_dim"])
|
|
self.norm2 = LayerNorm(cfg["emb_dim"])
|
|
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
|
|
|
def forward(self, x, use_cache=False):
|
|
# Shortcut connection for attention block
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
|
|
# x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
|
####################################################
|
|
# NEW
|
|
x = self.att(x, use_cache=use_cache)
|
|
####################################################
|
|
|
|
x = self.drop_shortcut(x)
|
|
x = x + shortcut # Add the original input back
|
|
|
|
# Shortcut connection for feed-forward block
|
|
shortcut = x
|
|
x = self.norm2(x)
|
|
x = self.ff(x)
|
|
x = self.drop_shortcut(x)
|
|
x = x + shortcut # Add the original input back
|
|
|
|
return x
|
|
|
|
|
|
class GPTModel(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
|
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
|
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
|
|
|
# self.trf_blocks = nn.Sequential(
|
|
# *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
####################################################
|
|
# NEW
|
|
self.trf_blocks = nn.ModuleList(
|
|
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
|
|
self.current_pos = 0
|
|
####################################################
|
|
|
|
self.final_norm = LayerNorm(cfg["emb_dim"])
|
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
|
|
|
def forward(self, in_idx, use_cache=False):
|
|
batch_size, seq_len = in_idx.shape
|
|
tok_embeds = self.tok_emb(in_idx)
|
|
|
|
# pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
|
|
|
####################################################
|
|
# NEW
|
|
|
|
if use_cache:
|
|
pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long)
|
|
self.current_pos += seq_len
|
|
else:
|
|
pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
|
|
pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
|
|
####################################################
|
|
|
|
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
|
x = self.drop_emb(x)
|
|
|
|
# x = self.trf_blocks(x)
|
|
####################################################
|
|
# NEW
|
|
for blk in self.trf_blocks:
|
|
x = blk(x, use_cache=use_cache)
|
|
####################################################
|
|
|
|
x = self.final_norm(x)
|
|
logits = self.out_head(x)
|
|
return logits
|
|
|
|
####################################################
|
|
# NEW
|
|
def reset_kv_cache(self):
|
|
for blk in self.trf_blocks:
|
|
blk.att.reset_cache()
|
|
self.current_pos = 0
|
|
####################################################
|
|
|
|
|
|
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
|
# idx is (B, T) array of indices in the current context
|
|
for _ in range(max_new_tokens):
|
|
|
|
# Crop current context if it exceeds the supported context size
|
|
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
|
# then only the last 5 tokens are used as context
|
|
idx_cond = idx[:, -context_size:]
|
|
|
|
# Get the predictions
|
|
with torch.no_grad():
|
|
logits = model(idx_cond)
|
|
|
|
# Focus only on the last time step
|
|
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
|
logits = logits[:, -1, :]
|
|
|
|
# Get the idx of the vocab entry with the highest logits value
|
|
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
|
|
|
# Append sampled index to the running sequence
|
|
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
|
|
|
return idx
|
|
|
|
|
|
####################################################
|
|
# NEW
|
|
def generate_text_simple_cached(model, idx, max_new_tokens,
|
|
context_size=None, use_cache=True):
|
|
model.eval()
|
|
ctx_len = context_size or model.pos_emb.num_embeddings
|
|
|
|
with torch.no_grad():
|
|
if use_cache:
|
|
# Init cache with full prompt
|
|
model.reset_kv_cache()
|
|
logits = model(idx[:, -ctx_len:], use_cache=True)
|
|
|
|
for _ in range(max_new_tokens):
|
|
# a) pick the token with the highest log-probability (greedy sampling)
|
|
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
|
# b) append it to the running sequence
|
|
idx = torch.cat([idx, next_idx], dim=1)
|
|
# c) feed model only the new token
|
|
logits = model(next_idx, use_cache=True)
|
|
else:
|
|
for _ in range(max_new_tokens):
|
|
logits = model(idx[:, -ctx_len:], use_cache=False)
|
|
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
|
idx = torch.cat([idx, next_idx], dim=1)
|
|
|
|
return idx
|
|
####################################################
|
|
|
|
|
|
def main():
|
|
GPT_CONFIG_124M = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 1024, # Context length
|
|
"emb_dim": 768, # Embedding dimension
|
|
"n_heads": 12, # Number of attention heads
|
|
"n_layers": 12, # Number of layers
|
|
"drop_rate": 0.1, # Dropout rate
|
|
"qkv_bias": False # Query-Key-Value bias
|
|
}
|
|
|
|
torch.manual_seed(123)
|
|
model = GPTModel(GPT_CONFIG_124M)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
model.eval() # disable dropout
|
|
|
|
start_context = "Hello, I am"
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
encoded = tokenizer.encode(start_context)
|
|
encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
|
|
|
|
print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
|
|
print("\nInput text:", start_context)
|
|
print("Encoded input text:", encoded)
|
|
print("encoded_tensor.shape:", encoded_tensor.shape)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
|
|
# token_ids = generate_text_simple(
|
|
# model=model,
|
|
# idx=encoded_tensor,
|
|
# max_new_tokens=200,
|
|
# context_size=GPT_CONFIG_124M["context_length"]
|
|
# )
|
|
|
|
####################################################
|
|
# NEW
|
|
token_ids = generate_text_simple_cached(
|
|
model=model,
|
|
idx=encoded_tensor,
|
|
max_new_tokens=200,
|
|
)
|
|
####################################################
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
total_time = time.time() - start
|
|
|
|
decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist())
|
|
|
|
print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
|
|
print("\nOutput:", token_ids)
|
|
print("Output length:", len(token_ids[0]))
|
|
print("Output text:", decoded_text)
|
|
|
|
print(f"\nTime: {total_time:.2f} sec")
|
|
print(f"{int(len(token_ids[0])/total_time)} tokens/sec")
|
|
if torch.cuda.is_available():
|
|
max_mem_bytes = torch.cuda.max_memory_allocated()
|
|
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
|
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|