mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-13 11:12:09 +00:00

* Fix bug in masking when kv cache is used. * add tests * dd tests * upd * add kv cache test to gh workflow * explicit mask slicing * upd --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
387 lines
14 KiB
Python
387 lines
14 KiB
Python
# This file collects all the relevant code that we covered thus far
|
||
# throughout Chapters 3-4.
|
||
# This file can be run as a standalone script.
|
||
|
||
import time
|
||
import tiktoken
|
||
import torch
|
||
import torch.nn as nn
|
||
|
||
|
||
#####################################
|
||
# Chapter 3
|
||
#####################################
|
||
class MultiHeadAttention(nn.Module):
|
||
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False, max_seq_len=None, window_size=None):
|
||
super().__init__()
|
||
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
||
|
||
self.d_out = d_out
|
||
self.num_heads = num_heads
|
||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||
|
||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
||
self.dropout = nn.Dropout(dropout)
|
||
|
||
####################################################
|
||
# NEW
|
||
self.max_seq_len = max_seq_len or context_length
|
||
self.window_size = window_size or self.max_seq_len
|
||
self.register_buffer("cache_k", None, persistent=False)
|
||
self.register_buffer("cache_v", None, persistent=False)
|
||
####################################################
|
||
|
||
def forward(self, x, use_cache=False):
|
||
b, num_tokens, d_in = x.shape
|
||
|
||
keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||
values_new = self.W_value(x)
|
||
queries = self.W_query(x)
|
||
|
||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||
keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
|
||
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
||
keys_new = keys_new.transpose(1, 2)
|
||
values_new = values_new.transpose(1, 2)
|
||
queries = queries.transpose(1, 2)
|
||
|
||
####################################################
|
||
# NEW
|
||
if use_cache:
|
||
if self.cache_k is None or self.cache_k.size(0) != b:
|
||
self.cache_k = torch.zeros(b, self.num_heads,
|
||
self.window_size, self.head_dim,
|
||
device=x.device)
|
||
self.cache_v = torch.zeros_like(self.cache_k)
|
||
self.ptr_cur = 0 # pointer to next free slot
|
||
|
||
# if incoming chunk would overflow discard oldest tokens
|
||
if self.ptr_cur + num_tokens > self.window_size:
|
||
overflow = self.ptr_cur + num_tokens - self.window_size
|
||
# shift everything left by `overflow` (cheap view-copy)
|
||
self.cache_k[:, :, :-overflow, :] = self.cache_k[:, :, overflow:, :].clone()
|
||
self.cache_v[:, :, :-overflow, :] = self.cache_v[:, :, overflow:, :].clone()
|
||
self.ptr_cur -= overflow # pointer after shift
|
||
|
||
self.cache_k[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = keys_new
|
||
self.cache_v[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = values_new
|
||
self.ptr_cur += num_tokens
|
||
|
||
keys = self.cache_k[:, :, :self.ptr_cur, :]
|
||
values = self.cache_v[:, :, :self.ptr_cur, :]
|
||
else:
|
||
keys, values = keys_new, values_new
|
||
self.ptr_cur = 0 # keep pointer sane if you interleave modes
|
||
####################################################
|
||
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||
|
||
####################################################
|
||
# NEW
|
||
K = attn_scores.size(-1)
|
||
|
||
if num_tokens == K:
|
||
# No cache → use the pre‑baked triangular mask slice
|
||
causal_mask = torch.triu(torch.ones(num_tokens, K, device=x.device, dtype=torch.bool), diagonal=1)
|
||
else:
|
||
# Cached: need to offset the diagonal by (K − num_tokens)
|
||
offset = K - num_tokens # number of tokens already in cache before this chunk
|
||
row_idx = torch.arange(num_tokens, device=x.device).unsqueeze(1) # (num_tokens, 1)
|
||
col_idx = torch.arange(K, device=x.device).unsqueeze(0) # (1, K)
|
||
causal_mask = row_idx + offset < col_idx # True where j > i+offset
|
||
####################################################
|
||
|
||
# Use the mask to fill attention scores
|
||
attn_scores.masked_fill_(causal_mask.unsqueeze(0).unsqueeze(0), -torch.inf)
|
||
|
||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||
attn_weights = self.dropout(attn_weights)
|
||
|
||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||
|
||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||
context_vec = self.out_proj(context_vec) # optional projection
|
||
|
||
return context_vec
|
||
|
||
####################################################
|
||
# NEW
|
||
def reset_cache(self):
|
||
self.cache_k, self.cache_v = None, None
|
||
####################################################
|
||
|
||
|
||
#####################################
|
||
# Chapter 4
|
||
#####################################
|
||
class LayerNorm(nn.Module):
|
||
def __init__(self, emb_dim):
|
||
super().__init__()
|
||
self.eps = 1e-5
|
||
self.scale = nn.Parameter(torch.ones(emb_dim))
|
||
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
||
|
||
def forward(self, x):
|
||
mean = x.mean(dim=-1, keepdim=True)
|
||
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
||
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
||
return self.scale * norm_x + self.shift
|
||
|
||
|
||
class GELU(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
|
||
def forward(self, x):
|
||
return 0.5 * x * (1 + torch.tanh(
|
||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||
(x + 0.044715 * torch.pow(x, 3))
|
||
))
|
||
|
||
|
||
class FeedForward(nn.Module):
|
||
def __init__(self, cfg):
|
||
super().__init__()
|
||
self.layers = nn.Sequential(
|
||
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
||
GELU(),
|
||
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.layers(x)
|
||
|
||
|
||
class TransformerBlock(nn.Module):
|
||
def __init__(self, cfg):
|
||
super().__init__()
|
||
self.att = MultiHeadAttention(
|
||
d_in=cfg["emb_dim"],
|
||
d_out=cfg["emb_dim"],
|
||
context_length=cfg["context_length"],
|
||
num_heads=cfg["n_heads"],
|
||
dropout=cfg["drop_rate"],
|
||
qkv_bias=cfg["qkv_bias"],
|
||
window_size=cfg["kv_window_size"] if "kv_window_size" in cfg else cfg["context_length"] # NEW
|
||
)
|
||
self.ff = FeedForward(cfg)
|
||
self.norm1 = LayerNorm(cfg["emb_dim"])
|
||
self.norm2 = LayerNorm(cfg["emb_dim"])
|
||
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
||
|
||
def forward(self, x, use_cache=False):
|
||
# Shortcut connection for attention block
|
||
shortcut = x
|
||
x = self.norm1(x)
|
||
|
||
# x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
||
####################################################
|
||
# NEW
|
||
x = self.att(x, use_cache=use_cache)
|
||
####################################################
|
||
|
||
x = self.drop_shortcut(x)
|
||
x = x + shortcut # Add the original input back
|
||
|
||
# Shortcut connection for feed-forward block
|
||
shortcut = x
|
||
x = self.norm2(x)
|
||
x = self.ff(x)
|
||
x = self.drop_shortcut(x)
|
||
x = x + shortcut # Add the original input back
|
||
|
||
return x
|
||
|
||
|
||
class GPTModel(nn.Module):
|
||
def __init__(self, cfg):
|
||
super().__init__()
|
||
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
||
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
||
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
||
|
||
# self.trf_blocks = nn.Sequential(
|
||
# *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||
####################################################
|
||
# NEW
|
||
self.trf_blocks = nn.ModuleList(
|
||
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||
|
||
self.ptr_current_pos = 0
|
||
####################################################
|
||
|
||
self.final_norm = LayerNorm(cfg["emb_dim"])
|
||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
||
|
||
def forward(self, in_idx, use_cache=False):
|
||
batch_size, seq_len = in_idx.shape
|
||
tok_embeds = self.tok_emb(in_idx)
|
||
|
||
# pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
||
|
||
####################################################
|
||
# NEW
|
||
|
||
if use_cache:
|
||
pos_ids = torch.arange(self.ptr_current_pos, self.ptr_current_pos + seq_len, device=in_idx.device, dtype=torch.long)
|
||
self.ptr_current_pos += seq_len
|
||
else:
|
||
pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
|
||
pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
|
||
####################################################
|
||
|
||
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
||
x = self.drop_emb(x)
|
||
|
||
# x = self.trf_blocks(x)
|
||
####################################################
|
||
# NEW
|
||
for blk in self.trf_blocks:
|
||
x = blk(x, use_cache=use_cache)
|
||
####################################################
|
||
|
||
x = self.final_norm(x)
|
||
logits = self.out_head(x)
|
||
return logits
|
||
|
||
####################################################
|
||
# NEW
|
||
def reset_kv_cache(self):
|
||
for blk in self.trf_blocks:
|
||
blk.att.reset_cache()
|
||
self.ptr_current_pos = 0
|
||
####################################################
|
||
|
||
|
||
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||
# idx is (B, T) array of indices in the current context
|
||
for _ in range(max_new_tokens):
|
||
|
||
# Crop current context if it exceeds the supported context size
|
||
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
||
# then only the last 5 tokens are used as context
|
||
idx_cond = idx[:, -context_size:]
|
||
|
||
# Get the predictions
|
||
with torch.no_grad():
|
||
logits = model(idx_cond)
|
||
|
||
# Focus only on the last time step
|
||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||
logits = logits[:, -1, :]
|
||
|
||
# Get the idx of the vocab entry with the highest logits value
|
||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||
|
||
# Append sampled index to the running sequence
|
||
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
||
|
||
return idx
|
||
|
||
|
||
####################################################
|
||
# NEW
|
||
def generate_text_simple_cached(model, idx, max_new_tokens, context_size=None, use_cache=True):
|
||
model.eval()
|
||
|
||
ctx_len = context_size or model.pos_emb.num_embeddings
|
||
|
||
with torch.no_grad():
|
||
if use_cache:
|
||
model.reset_kv_cache()
|
||
logits = model(idx[:, -ctx_len:], use_cache=True)
|
||
|
||
for _ in range(max_new_tokens):
|
||
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
||
idx = torch.cat([idx, next_idx], dim=1)
|
||
logits = model(next_idx, use_cache=True)
|
||
else:
|
||
for _ in range(max_new_tokens):
|
||
logits = model(idx[:, -ctx_len:], use_cache=False)
|
||
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
||
idx = torch.cat([idx, next_idx], dim=1)
|
||
|
||
return idx
|
||
####################################################
|
||
|
||
|
||
def main():
|
||
GPT_CONFIG_124M = {
|
||
"vocab_size": 50257, # Vocabulary size
|
||
"context_length": 1024, # Context length
|
||
"emb_dim": 768, # Embedding dimension
|
||
"n_heads": 12, # Number of attention heads
|
||
"n_layers": 12, # Number of layers
|
||
"drop_rate": 0.1, # Dropout rate
|
||
"qkv_bias": False, # Query-Key-Value bias
|
||
"kv_window_size": 1024 # NEW: KV cache window size
|
||
}
|
||
|
||
torch.manual_seed(123)
|
||
model = GPTModel(GPT_CONFIG_124M)
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
model.to(device)
|
||
model.eval() # disable dropout
|
||
|
||
start_context = "Hello, I am"
|
||
|
||
tokenizer = tiktoken.get_encoding("gpt2")
|
||
encoded = tokenizer.encode(start_context)
|
||
encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
|
||
|
||
print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
|
||
print("\nInput text:", start_context)
|
||
print("Encoded input text:", encoded)
|
||
print("encoded_tensor.shape:", encoded_tensor.shape)
|
||
|
||
if torch.cuda.is_available():
|
||
torch.cuda.synchronize()
|
||
start = time.time()
|
||
|
||
# token_ids = generate_text_simple(
|
||
# model=model,
|
||
# idx=encoded_tensor,
|
||
# max_new_tokens=200,
|
||
# context_size=GPT_CONFIG_124M["context_length"]
|
||
# )
|
||
|
||
####################################################
|
||
# NEW
|
||
token_ids = generate_text_simple_cached(
|
||
model=model,
|
||
idx=encoded_tensor,
|
||
max_new_tokens=200,
|
||
)
|
||
####################################################
|
||
|
||
if torch.cuda.is_available():
|
||
torch.cuda.synchronize()
|
||
total_time = time.time() - start
|
||
|
||
decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist())
|
||
|
||
print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
|
||
print("\nOutput:", token_ids)
|
||
print("Output length:", len(token_ids[0]))
|
||
print("Output text:", decoded_text)
|
||
|
||
print(f"\nTime: {total_time:.2f} sec")
|
||
print(f"{int(len(token_ids[0])/total_time)} tokens/sec")
|
||
if torch.cuda.is_available():
|
||
max_mem_bytes = torch.cuda.max_memory_allocated()
|
||
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
||
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|