mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-09 17:23:06 +00:00
112 lines
3.4 KiB
Python
112 lines
3.4 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
from llms_from_scratch.ch02 import create_dataloader_v1
|
|
from llms_from_scratch.ch04 import GPTModel, GPTModelFast
|
|
from llms_from_scratch.ch05 import train_model_simple
|
|
|
|
import os
|
|
import urllib
|
|
|
|
import pytest
|
|
import tiktoken
|
|
import torch
|
|
from torch.utils.data import Subset, DataLoader
|
|
|
|
|
|
GPT_CONFIG_124M = {
|
|
"vocab_size": 50257,
|
|
"context_length": 256, # Shortened for test speed
|
|
"emb_dim": 768,
|
|
"n_heads": 12,
|
|
"n_layers": 12,
|
|
"drop_rate": 0.1,
|
|
"qkv_bias": False
|
|
}
|
|
|
|
OTHER_SETTINGS = {
|
|
"learning_rate": 5e-4,
|
|
"num_epochs": 2,
|
|
"batch_size": 1,
|
|
"weight_decay": 0.1
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize("ModelClass", [GPTModel, GPTModelFast])
|
|
def test_train_simple(tmp_path, ModelClass):
|
|
torch.manual_seed(123)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
##############################
|
|
# Download data if necessary
|
|
##############################
|
|
file_path = tmp_path / "the-verdict.txt"
|
|
url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch02/01_main-chapter-code/the-verdict.txt"
|
|
|
|
if not os.path.exists(file_path):
|
|
with urllib.request.urlopen(url) as response:
|
|
text_data = response.read().decode("utf-8")
|
|
with open(file_path, "w", encoding="utf-8") as f:
|
|
f.write(text_data)
|
|
else:
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
text_data = f.read()
|
|
|
|
##############################
|
|
# Set up dataloaders
|
|
##############################
|
|
train_ratio = 0.90
|
|
split_idx = int(train_ratio * len(text_data))
|
|
|
|
train_loader = create_dataloader_v1(
|
|
text_data[:split_idx],
|
|
batch_size=OTHER_SETTINGS["batch_size"],
|
|
max_length=GPT_CONFIG_124M["context_length"],
|
|
stride=GPT_CONFIG_124M["context_length"],
|
|
drop_last=True,
|
|
shuffle=True,
|
|
num_workers=0
|
|
)
|
|
|
|
val_loader = create_dataloader_v1(
|
|
text_data[split_idx:],
|
|
batch_size=OTHER_SETTINGS["batch_size"],
|
|
max_length=GPT_CONFIG_124M["context_length"],
|
|
stride=GPT_CONFIG_124M["context_length"],
|
|
drop_last=False,
|
|
shuffle=False,
|
|
num_workers=0
|
|
)
|
|
|
|
# Limit to 1 batch for speed
|
|
train_subset = Subset(train_loader.dataset, range(1))
|
|
one_batch_train_loader = DataLoader(train_subset, batch_size=1)
|
|
val_subset = Subset(val_loader.dataset, range(1))
|
|
one_batch_val_loader = DataLoader(val_subset, batch_size=1)
|
|
|
|
##############################
|
|
# Train model
|
|
##############################
|
|
model = ModelClass(GPT_CONFIG_124M)
|
|
model.to(device)
|
|
|
|
optimizer = torch.optim.AdamW(
|
|
model.parameters(),
|
|
lr=OTHER_SETTINGS["learning_rate"],
|
|
weight_decay=OTHER_SETTINGS["weight_decay"]
|
|
)
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
train_losses, val_losses, tokens_seen = train_model_simple(
|
|
model, one_batch_train_loader, one_batch_val_loader, optimizer, device,
|
|
num_epochs=OTHER_SETTINGS["num_epochs"], eval_freq=1, eval_iter=1,
|
|
start_context="Every effort moves you", tokenizer=tokenizer
|
|
)
|
|
|
|
assert round(train_losses[0], 1) == 7.6
|
|
assert round(val_losses[0], 1) == 10.1
|
|
assert train_losses[-1] < train_losses[0]
|