TITC d16527ddf2
total training iters may equal to warmup_iters (#301)
total_training_iters=20, warmup_iters=20= len(train_loader) 4 multiply n_epochs 5, then ZeroDivisionError occurred.
```shell
Traceback (most recent call last):                                                                                                                                                                                                                                                                                              
  File "LLMs-from-scratch/ch05/05_bonus_hparam_tuning/hparam_search.py", line 191, in <module>                                             
    train_loss, val_loss = train_model(                                                                                                                                                                                                                                                                                         
                           ^^^^^^^^^^^^                                                                                                                         
  File "/mnt/raid1/docker/ai/LLMs-from-scratch/ch05/05_bonus_hparam_tuning/hparam_search.py", line 90, in train_model                                                                                                                                                                                                           
    progress = (global_step - warmup_iters) / (total_training_iters - warmup_iters)                                                                             
               ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                             
ZeroDivisionError: division by zero 
```
2024-08-06 07:10:05 -05:00

216 lines
7.7 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import itertools
import math
import os
import tiktoken
import torch
from previous_chapters import GPTModel, create_dataloader_v1
# Define a grid of hyperparameters to search over
HPARAM_GRID = {
"batch_size": [2, 4, 8, 16],
"drop_rate": [0.0, 0.1, 0.2],
"warmup_iters": [10, 20, 30],
"weight_decay": [0.1, 0.01, 0.0],
"peak_lr": [0.0001, 0.0005, 0.001, 0.005],
"initial_lr": [0.00005, 0.0001],
"min_lr": [0.00005, 0.00001, 0.0001],
"n_epochs": [5, 10, 15, 20, 25],
}
def calc_loss_loader(data_loader, model, device, num_batches=None):
total_loss = 0.
if len(data_loader) == 0:
return float("nan")
elif num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss_batch(input_batch, target_batch, model, device)
total_loss += loss.item()
else:
break
return total_loss / num_batches
def calc_loss_batch(input_batch, target_batch, model, device):
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
logits = model(input_batch)
logits = logits.view(-1, logits.size(-1))
loss = torch.nn.functional.cross_entropy(logits, target_batch.view(-1))
return loss
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
model.eval()
with torch.no_grad():
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
model.train()
return train_loss, val_loss
def train_model(model, train_loader, val_loader, optimizer, device,
n_epochs, eval_freq, eval_iter,
encoded_start_context, tokenizer, warmup_iters=10,
initial_lr=3e-05, min_lr=1e-6):
global_step = 0
max_lr = optimizer.param_groups[0]["lr"]
# Calculate total number of iterations
total_training_iters = len(train_loader) * n_epochs
# Calculate the learning rate increment at each step during warmup
lr_increment = (optimizer.param_groups[0]["lr"] - initial_lr) / warmup_iters
for epoch in range(n_epochs):
model.train()
for input_batch, target_batch in train_loader:
optimizer.zero_grad()
# Increment the global step at the beginning of the iteration
global_step += 1
# Warmup: adjust learning rate linearly
if global_step <= warmup_iters:
lr = initial_lr + global_step * lr_increment
# Cosine annealing phase
else:
progress = (global_step - warmup_iters) / (total_training_iters - warmup_iters)
lr = min_lr + (max_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress))
# Apply the calculated learning rate
for param_group in optimizer.param_groups:
param_group["lr"] = lr
loss = calc_loss_batch(input_batch, target_batch, model, device)
loss.backward()
# Apply gradient clipping
if global_step >= warmup_iters:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
train_loss, val_loss = evaluate_model(model, train_loader, val_loader, device, eval_iter)
return train_loss, val_loss
if __name__ == "__main__":
# Generate all combinations of hyperparameters
hyperparameter_combinations = list(itertools.product(*HPARAM_GRID.values()))
total_combinations = len(hyperparameter_combinations)
print(f"Total hyperparameter configurations: {total_combinations}")
# Placeholder for the best loss and best hyperparameters
best_val_loss = float('inf')
best_hparams = {}
script_path = os.path.abspath(__file__)
script_dir = os.path.dirname(script_path)
with open(os.path.join(script_dir, "the-verdict.txt"), "r", encoding="utf-8") as file:
text_data = file.read()
tokenizer = tiktoken.get_encoding("gpt2")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_ratio = 0.95
split_idx = int(train_ratio * len(text_data))
torch.manual_seed(123)
interrupted = False
current_config = 0
for combination in hyperparameter_combinations:
try:
current_config += 1
print(f"Evaluating configuration {current_config} of {total_combinations}")
# Unpack the current combination of hyperparameters
HPARAM_CONFIG = dict(zip(HPARAM_GRID.keys(), combination))
GPT_CONFIG_124M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 256, # Context length -- shortened from original 1024 tokens
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": HPARAM_CONFIG["drop_rate"],
"qkv_bias": False, # Query-Key-Value bias
}
torch.manual_seed(123)
train_loader = create_dataloader_v1(
text_data[:split_idx],
batch_size=HPARAM_CONFIG["batch_size"],
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=True,
shuffle=True,
num_workers=0
)
val_loader = create_dataloader_v1(
text_data[split_idx:],
batch_size=HPARAM_CONFIG["batch_size"],
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=False,
shuffle=False,
num_workers=0
)
model = GPTModel(GPT_CONFIG_124M)
model.to(device)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=HPARAM_CONFIG["peak_lr"],
weight_decay=HPARAM_CONFIG["weight_decay"]
)
encoded_start_context = tokenizer.encode("Nevertheless")
encoded_tensor = torch.tensor(encoded_start_context).unsqueeze(0)
train_loss, val_loss = train_model(
model, train_loader, val_loader, optimizer, device,
n_epochs=HPARAM_CONFIG["n_epochs"],
eval_freq=5, eval_iter=1,
encoded_start_context=encoded_tensor,
tokenizer=tokenizer,
warmup_iters=HPARAM_CONFIG["warmup_iters"],
initial_lr=HPARAM_CONFIG["initial_lr"],
min_lr=HPARAM_CONFIG["min_lr"]
)
# Log the best hyperparameters based on validation loss
if val_loss < best_val_loss:
best_val_loss = val_loss
best_train_loss = train_loss
best_hparams = HPARAM_CONFIG
except KeyboardInterrupt:
print("Hyperparameter search completed.")
print(f"Best hyperparameters: {best_hparams}")
print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")
interrupted = True
break
if not interrupted:
print("Hyperparameter search completed.")
print(f"Best hyperparameters: {best_hparams}")
print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")