mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 18:00:08 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			289 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "1545a16b-bc8d-4e49-b9a6-db6631e7483d",
 | |
|    "metadata": {
 | |
|     "id": "1545a16b-bc8d-4e49-b9a6-db6631e7483d"
 | |
|    },
 | |
|    "source": [
 | |
|     "<table style=\"width:100%\">\n",
 | |
|     "<tr>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<font size=\"2\">\n",
 | |
|     "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
 | |
|     "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
 | |
|     "</font>\n",
 | |
|     "</td>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
 | |
|     "</td>\n",
 | |
|     "</tr>\n",
 | |
|     "</table>"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "f3f83194-82b9-4478-9550-5ad793467bd0",
 | |
|    "metadata": {
 | |
|     "id": "f3f83194-82b9-4478-9550-5ad793467bd0"
 | |
|    },
 | |
|    "source": [
 | |
|     "# Load And Use Finetuned Model"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "466b564e-4fd5-4d76-a3a1-63f9f0993b7e",
 | |
|    "metadata": {
 | |
|     "id": "466b564e-4fd5-4d76-a3a1-63f9f0993b7e"
 | |
|    },
 | |
|    "source": [
 | |
|     "This notebook contains minimal code to load the finetuned model that was created and saved in chapter 6 via [ch06.ipynb](ch06.ipynb)."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "fd80e5f5-0f79-4a6c-bf31-2026e7d30e52",
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/"
 | |
|     },
 | |
|     "id": "fd80e5f5-0f79-4a6c-bf31-2026e7d30e52",
 | |
|     "outputId": "9eeefb8e-a7eb-4d62-cf78-c797b3ed4e2e"
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "tiktoken version: 0.7.0\n",
 | |
|       "torch version: 2.4.0\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from importlib.metadata import version\n",
 | |
|     "\n",
 | |
|     "pkgs = [\n",
 | |
|     "    \"tiktoken\",    # Tokenizer\n",
 | |
|     "    \"torch\",       # Deep learning library\n",
 | |
|     "]\n",
 | |
|     "for p in pkgs:\n",
 | |
|     "    print(f\"{p} version: {version(p)}\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "ed86d6b7-f32d-4601-b585-a2ea3dbf7201",
 | |
|    "metadata": {
 | |
|     "id": "ed86d6b7-f32d-4601-b585-a2ea3dbf7201"
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from pathlib import Path\n",
 | |
|     "\n",
 | |
|     "finetuned_model_path = Path(\"review_classifier.pth\")\n",
 | |
|     "if not finetuned_model_path.exists():\n",
 | |
|     "    print(\n",
 | |
|     "        f\"Could not find '{finetuned_model_path}'.\\n\"\n",
 | |
|     "        \"Run the `ch06.ipynb` notebook to finetune and save the finetuned model.\"\n",
 | |
|     "    )"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "fb02584a-5e31-45d5-8377-794876907bc6",
 | |
|    "metadata": {
 | |
|     "id": "fb02584a-5e31-45d5-8377-794876907bc6"
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "from previous_chapters import GPTModel\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "BASE_CONFIG = {\n",
 | |
|     "    \"vocab_size\": 50257,     # Vocabulary size\n",
 | |
|     "    \"context_length\": 1024,  # Context length\n",
 | |
|     "    \"drop_rate\": 0.0,        # Dropout rate\n",
 | |
|     "    \"qkv_bias\": True         # Query-key-value bias\n",
 | |
|     "}\n",
 | |
|     "\n",
 | |
|     "model_configs = {\n",
 | |
|     "    \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
 | |
|     "    \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
 | |
|     "    \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
 | |
|     "    \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
 | |
|     "}\n",
 | |
|     "\n",
 | |
|     "CHOOSE_MODEL = \"gpt2-small (124M)\"\n",
 | |
|     "\n",
 | |
|     "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])\n",
 | |
|     "\n",
 | |
|     "# Initialize base model\n",
 | |
|     "model = GPTModel(BASE_CONFIG)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "f1ccf2b7-176e-4cfd-af7a-53fb76010b94",
 | |
|    "metadata": {
 | |
|     "id": "f1ccf2b7-176e-4cfd-af7a-53fb76010b94"
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import torch\n",
 | |
|     "\n",
 | |
|     "# Convert model to classifier as in section 6.5 in ch06.ipynb\n",
 | |
|     "num_classes = 2\n",
 | |
|     "model.out_head = torch.nn.Linear(in_features=BASE_CONFIG[\"emb_dim\"], out_features=num_classes)\n",
 | |
|     "\n",
 | |
|     "# Then load pretrained weights\n",
 | |
|     "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
 | |
|     "model.load_state_dict(torch.load(\"review_classifier.pth\", map_location=device, weights_only=True))\n",
 | |
|     "model.to(device)\n",
 | |
|     "model.eval();"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "a1fd174e-9555-46c5-8780-19b0aa4f26e5",
 | |
|    "metadata": {
 | |
|     "id": "a1fd174e-9555-46c5-8780-19b0aa4f26e5"
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import tiktoken\n",
 | |
|     "\n",
 | |
|     "tokenizer = tiktoken.get_encoding(\"gpt2\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "2a4c0129-efe5-46e9-bb90-ba08d407c1a2",
 | |
|    "metadata": {
 | |
|     "id": "2a4c0129-efe5-46e9-bb90-ba08d407c1a2"
 | |
|    },
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# This function was implemented in ch06.ipynb\n",
 | |
|     "def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256):\n",
 | |
|     "    model.eval()\n",
 | |
|     "\n",
 | |
|     "    # Prepare inputs to the model\n",
 | |
|     "    input_ids = tokenizer.encode(text)\n",
 | |
|     "    supported_context_length = model.pos_emb.weight.shape[0]\n",
 | |
|     "\n",
 | |
|     "    # Truncate sequences if they too long\n",
 | |
|     "    input_ids = input_ids[:min(max_length, supported_context_length)]\n",
 | |
|     "\n",
 | |
|     "    # Pad sequences to the longest sequence\n",
 | |
|     "    input_ids += [pad_token_id] * (max_length - len(input_ids))\n",
 | |
|     "    input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0) # add batch dimension\n",
 | |
|     "\n",
 | |
|     "    # Model inference\n",
 | |
|     "    with torch.no_grad():\n",
 | |
|     "        logits = model(input_tensor.to(device))[:, -1, :]  # Logits of the last output token\n",
 | |
|     "    predicted_label = torch.argmax(logits, dim=-1).item()\n",
 | |
|     "\n",
 | |
|     "    # Return the classified result\n",
 | |
|     "    return \"spam\" if predicted_label == 1 else \"not spam\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "1e26862c-10b5-4a0f-9dd6-b6ddbad2fc3f",
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/"
 | |
|     },
 | |
|     "id": "1e26862c-10b5-4a0f-9dd6-b6ddbad2fc3f",
 | |
|     "outputId": "28eb2c02-0e38-4356-b2a3-2bf6accb5316"
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "spam\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "text_1 = (\n",
 | |
|     "    \"You are a winner you have been specially\"\n",
 | |
|     "    \" selected to receive $1000 cash or a $2000 award.\"\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "print(classify_review(\n",
 | |
|     "    text_1, model, tokenizer, device, max_length=120\n",
 | |
|     "))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "id": "78472e05-cb4e-4ec4-82e8-23777aa90cf8",
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/"
 | |
|     },
 | |
|     "id": "78472e05-cb4e-4ec4-82e8-23777aa90cf8",
 | |
|     "outputId": "0cd3cd62-f407-45f3-fa4f-51ff665355eb"
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "not spam\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "text_2 = (\n",
 | |
|     "    \"Hey, just wanted to check if we're still on\"\n",
 | |
|     "    \" for dinner tonight? Let me know!\"\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "print(classify_review(\n",
 | |
|     "    text_2, model, tokenizer, device, max_length=120\n",
 | |
|     "))"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "accelerator": "GPU",
 | |
|   "colab": {
 | |
|    "gpuType": "L4",
 | |
|    "provenance": []
 | |
|   },
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.4"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 | 
