mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 01:41:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| from .ch04 import generate_text_simple
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import urllib.request
 | |
| 
 | |
| import numpy as np
 | |
| import matplotlib.pyplot as plt
 | |
| from matplotlib.ticker import MaxNLocator
 | |
| import torch
 | |
| from tqdm import tqdm
 | |
| 
 | |
| 
 | |
| def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
 | |
| 
 | |
|     # For-loop is the same as before: Get logits, and only focus on last time step
 | |
|     for _ in range(max_new_tokens):
 | |
|         idx_cond = idx[:, -context_size:]
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # New: Filter logits with top_k sampling
 | |
|         if top_k is not None:
 | |
|             # Keep only top_k values
 | |
|             top_logits, _ = torch.topk(logits, top_k)
 | |
|             min_val = top_logits[:, -1]
 | |
|             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
 | |
| 
 | |
|         # New: Apply temperature scaling
 | |
|         if temperature > 0.0:
 | |
|             logits = logits / temperature
 | |
| 
 | |
|             # Apply softmax to get probabilities
 | |
|             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)
 | |
| 
 | |
|             # Sample from the distribution
 | |
|             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)
 | |
| 
 | |
|         # Otherwise same as before: get idx of the vocab entry with the highest logits value
 | |
|         else:
 | |
|             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)
 | |
| 
 | |
|         if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
 | |
|             break
 | |
| 
 | |
|         # Same as before: append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)
 | |
| 
 | |
|     return idx
 | |
| 
 | |
| 
 | |
| def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | |
|                        eval_freq, eval_iter, start_context, tokenizer):
 | |
|     # Initialize lists to track losses and tokens seen
 | |
|     train_losses, val_losses, track_tokens_seen = [], [], []
 | |
|     tokens_seen, global_step = 0, -1
 | |
| 
 | |
|     # Main training loop
 | |
|     for epoch in range(num_epochs):
 | |
|         model.train()  # Set model to training mode
 | |
| 
 | |
|         for input_batch, target_batch in train_loader:
 | |
|             optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             loss.backward()  # Calculate loss gradients
 | |
|             optimizer.step()  # Update model weights using loss gradients
 | |
|             tokens_seen += input_batch.numel()
 | |
|             global_step += 1
 | |
| 
 | |
|             # Optional evaluation step
 | |
|             if global_step % eval_freq == 0:
 | |
|                 train_loss, val_loss = evaluate_model(
 | |
|                     model, train_loader, val_loader, device, eval_iter)
 | |
|                 train_losses.append(train_loss)
 | |
|                 val_losses.append(val_loss)
 | |
|                 track_tokens_seen.append(tokens_seen)
 | |
|                 print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | |
|                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | |
| 
 | |
|         # Print a sample text after each epoch
 | |
|         generate_and_print_sample(
 | |
|             model, tokenizer, device, start_context
 | |
|         )
 | |
| 
 | |
|     return train_losses, val_losses, track_tokens_seen
 | |
| 
 | |
| 
 | |
| def evaluate_model(model, train_loader, val_loader, device, eval_iter):
 | |
|     model.eval()
 | |
|     with torch.no_grad():
 | |
|         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
 | |
|         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
 | |
|     model.train()
 | |
|     return train_loss, val_loss
 | |
| 
 | |
| 
 | |
| def generate_and_print_sample(model, tokenizer, device, start_context):
 | |
|     model.eval()
 | |
|     context_size = model.pos_emb.weight.shape[0]
 | |
|     encoded = text_to_token_ids(start_context, tokenizer).to(device)
 | |
|     with torch.no_grad():
 | |
|         token_ids = generate_text_simple(
 | |
|             model=model, idx=encoded,
 | |
|             max_new_tokens=50, context_size=context_size
 | |
|         )
 | |
|         decoded_text = token_ids_to_text(token_ids, tokenizer)
 | |
|         print(decoded_text.replace("\n", " "))  # Compact print format
 | |
|     model.train()
 | |
| 
 | |
| 
 | |
| def assign(left, right):
 | |
|     if left.shape != right.shape:
 | |
|         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
 | |
|     return torch.nn.Parameter(torch.tensor(right))
 | |
| 
 | |
| 
 | |
| def load_weights_into_gpt(gpt, params):
 | |
|     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
 | |
|     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
 | |
| 
 | |
|     for b in range(len(params["blocks"])):
 | |
|         q_w, k_w, v_w = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.weight, q_w.T)
 | |
|         gpt.trf_blocks[b].att.W_key.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.weight, k_w.T)
 | |
|         gpt.trf_blocks[b].att.W_value.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.weight, v_w.T)
 | |
| 
 | |
|         q_b, k_b, v_b = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.bias, q_b)
 | |
|         gpt.trf_blocks[b].att.W_key.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.bias, k_b)
 | |
|         gpt.trf_blocks[b].att.W_value.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.bias, v_b)
 | |
| 
 | |
|         gpt.trf_blocks[b].att.out_proj.weight = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.weight,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].att.out_proj.bias = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.bias,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].ff.layers[0].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].weight,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[0].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].bias,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["b"])
 | |
|         gpt.trf_blocks[b].ff.layers[2].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].weight,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[2].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].bias,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].norm1.scale = assign(
 | |
|             gpt.trf_blocks[b].norm1.scale,
 | |
|             params["blocks"][b]["ln_1"]["g"])
 | |
|         gpt.trf_blocks[b].norm1.shift = assign(
 | |
|             gpt.trf_blocks[b].norm1.shift,
 | |
|             params["blocks"][b]["ln_1"]["b"])
 | |
|         gpt.trf_blocks[b].norm2.scale = assign(
 | |
|             gpt.trf_blocks[b].norm2.scale,
 | |
|             params["blocks"][b]["ln_2"]["g"])
 | |
|         gpt.trf_blocks[b].norm2.shift = assign(
 | |
|             gpt.trf_blocks[b].norm2.shift,
 | |
|             params["blocks"][b]["ln_2"]["b"])
 | |
| 
 | |
|     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
 | |
|     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
 | |
|     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
 | |
| 
 | |
| 
 | |
| def text_to_token_ids(text, tokenizer):
 | |
|     encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
 | |
|     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
 | |
|     return encoded_tensor
 | |
| 
 | |
| 
 | |
| def token_ids_to_text(token_ids, tokenizer):
 | |
|     flat = token_ids.squeeze(0)  # remove batch dimension
 | |
|     return tokenizer.decode(flat.tolist())
 | |
| 
 | |
| 
 | |
| def calc_loss_batch(input_batch, target_batch, model, device):
 | |
|     input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | |
|     logits = model(input_batch)
 | |
|     loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
 | |
|     return loss
 | |
| 
 | |
| 
 | |
| def calc_loss_loader(data_loader, model, device, num_batches=None):
 | |
|     total_loss = 0.
 | |
|     if len(data_loader) == 0:
 | |
|         return float("nan")
 | |
|     elif num_batches is None:
 | |
|         num_batches = len(data_loader)
 | |
|     else:
 | |
|         # Reduce the number of batches to match the total number of batches in the data loader
 | |
|         # if num_batches exceeds the number of batches in the data loader
 | |
|         num_batches = min(num_batches, len(data_loader))
 | |
|     for i, (input_batch, target_batch) in enumerate(data_loader):
 | |
|         if i < num_batches:
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             total_loss += loss.item()
 | |
|         else:
 | |
|             break
 | |
|     return total_loss / num_batches
 | |
| 
 | |
| 
 | |
| def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
 | |
|     fig, ax1 = plt.subplots(figsize=(5, 3))
 | |
| 
 | |
|     # Plot training and validation loss against epochs
 | |
|     ax1.plot(epochs_seen, train_losses, label="Training loss")
 | |
|     ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
 | |
|     ax1.set_xlabel("Epochs")
 | |
|     ax1.set_ylabel("Loss")
 | |
|     ax1.legend(loc="upper right")
 | |
|     ax1.xaxis.set_major_locator(MaxNLocator(integer=True))  # only show integer labels on x-axis
 | |
| 
 | |
|     # Create a second x-axis for tokens seen
 | |
|     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
 | |
|     ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks
 | |
|     ax2.set_xlabel("Tokens seen")
 | |
| 
 | |
|     fig.tight_layout()  # Adjust layout to make room
 | |
|     plt.savefig("loss-plot.pdf")
 | |
|     plt.show()
 | |
| 
 | |
| 
 | |
| def download_and_load_gpt2(model_size, models_dir):
 | |
|     import tensorflow as tf
 | |
| 
 | |
|     # Validate model size
 | |
|     allowed_sizes = ("124M", "355M", "774M", "1558M")
 | |
|     if model_size not in allowed_sizes:
 | |
|         raise ValueError(f"Model size not in {allowed_sizes}")
 | |
| 
 | |
|     # Define paths
 | |
|     model_dir = os.path.join(models_dir, model_size)
 | |
|     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
 | |
|     backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
 | |
|     filenames = [
 | |
|         "checkpoint", "encoder.json", "hparams.json",
 | |
|         "model.ckpt.data-00000-of-00001", "model.ckpt.index",
 | |
|         "model.ckpt.meta", "vocab.bpe"
 | |
|     ]
 | |
| 
 | |
|     # Download files
 | |
|     os.makedirs(model_dir, exist_ok=True)
 | |
|     for filename in filenames:
 | |
|         file_url = os.path.join(base_url, model_size, filename)
 | |
|         backup_url = os.path.join(backup_base_url, model_size, filename)
 | |
|         file_path = os.path.join(model_dir, filename)
 | |
|         download_file(file_url, file_path, backup_url)
 | |
| 
 | |
|     # Load settings and params
 | |
|     tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
 | |
|     settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
 | |
|     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
 | |
| 
 | |
|     return settings, params
 | |
| 
 | |
| 
 | |
| def download_file(url, destination, backup_url=None):
 | |
|     def _attempt_download(download_url):
 | |
|         with urllib.request.urlopen(download_url) as response:
 | |
|             # Get the total file size from headers, defaulting to 0 if not present
 | |
|             file_size = int(response.headers.get("Content-Length", 0))
 | |
| 
 | |
|             # Check if file exists and has the same size
 | |
|             if os.path.exists(destination):
 | |
|                 file_size_local = os.path.getsize(destination)
 | |
|                 if file_size == file_size_local:
 | |
|                     print(f"File already exists and is up-to-date: {destination}")
 | |
|                     return True  # Indicate success without re-downloading
 | |
| 
 | |
|             block_size = 1024  # 1 Kilobyte
 | |
| 
 | |
|             # Initialize the progress bar with total file size
 | |
|             progress_bar_description = os.path.basename(download_url)
 | |
|             with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
 | |
|                 with open(destination, "wb") as file:
 | |
|                     while True:
 | |
|                         chunk = response.read(block_size)
 | |
|                         if not chunk:
 | |
|                             break
 | |
|                         file.write(chunk)
 | |
|                         progress_bar.update(len(chunk))
 | |
|             return True
 | |
| 
 | |
|     try:
 | |
|         if _attempt_download(url):
 | |
|             return
 | |
|     except (urllib.error.HTTPError, urllib.error.URLError):
 | |
|         if backup_url is not None:
 | |
|             print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
 | |
|             try:
 | |
|                 if _attempt_download(backup_url):
 | |
|                     return
 | |
|             except urllib.error.HTTPError:
 | |
|                 pass
 | |
| 
 | |
|         # If we reach here, both attempts have failed
 | |
|         error_message = (
 | |
|             f"Failed to download from both primary URL ({url})"
 | |
|             f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
 | |
|             "\nCheck your internet connection or the file availability.\n"
 | |
|             "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
 | |
|         )
 | |
|         print(error_message)
 | |
|     except Exception as e:
 | |
|         print(f"An unexpected error occurred: {e}")
 | |
| 
 | |
| 
 | |
| def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
 | |
|     import tensorflow as tf
 | |
| 
 | |
|     # Initialize parameters dictionary with empty blocks for each layer
 | |
|     params = {"blocks": [{} for _ in range(settings["n_layer"])]}
 | |
| 
 | |
|     # Iterate over each variable in the checkpoint
 | |
|     for name, _ in tf.train.list_variables(ckpt_path):
 | |
|         # Load the variable and remove singleton dimensions
 | |
|         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
 | |
| 
 | |
|         # Process the variable name to extract relevant parts
 | |
|         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix
 | |
| 
 | |
|         # Identify the target dictionary for the variable
 | |
|         target_dict = params
 | |
|         if variable_name_parts[0].startswith("h"):
 | |
|             layer_number = int(variable_name_parts[0][1:])
 | |
|             target_dict = params["blocks"][layer_number]
 | |
| 
 | |
|         # Recursively access or create nested dictionaries
 | |
|         for key in variable_name_parts[1:-1]:
 | |
|             target_dict = target_dict.setdefault(key, {})
 | |
| 
 | |
|         # Assign the variable array to the last key
 | |
|         last_key = variable_name_parts[-1]
 | |
|         target_dict[last_key] = variable_array
 | |
| 
 | |
|     return params
 | 
