mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			248 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| import json
 | |
| import os
 | |
| import psutil
 | |
| import urllib
 | |
| 
 | |
| import torch
 | |
| import tqdm
 | |
| from torch.utils.data import Dataset
 | |
| 
 | |
| 
 | |
| def download_and_load_file(file_path, url):
 | |
| 
 | |
|     if not os.path.exists(file_path):
 | |
|         with urllib.request.urlopen(url) as response:
 | |
|             text_data = response.read().decode("utf-8")
 | |
|         with open(file_path, "w", encoding="utf-8") as file:
 | |
|             file.write(text_data)
 | |
| 
 | |
|     # The book originally contained this unnecessary "else" clause:
 | |
|     # else:
 | |
|     #     with open(file_path, "r", encoding="utf-8") as file:
 | |
|     #         text_data = file.read()
 | |
| 
 | |
|     with open(file_path, "r", encoding="utf-8") as file:
 | |
|         data = json.load(file)
 | |
| 
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def format_input(entry):
 | |
|     instruction_text = (
 | |
|         f"Below is an instruction that describes a task. "
 | |
|         f"Write a response that appropriately completes the request."
 | |
|         f"\n\n### Instruction:\n{entry['instruction']}"
 | |
|     )
 | |
| 
 | |
|     input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""
 | |
| 
 | |
|     return instruction_text + input_text
 | |
| 
 | |
| 
 | |
| class InstructionDataset(Dataset):
 | |
|     def __init__(self, data, tokenizer):
 | |
|         self.data = data
 | |
| 
 | |
|         # Pre-tokenize texts
 | |
|         self.encoded_texts = []
 | |
|         for entry in data:
 | |
|             instruction_plus_input = format_input(entry)
 | |
|             response_text = f"\n\n### Response:\n{entry['output']}"
 | |
|             full_text = instruction_plus_input + response_text
 | |
|             self.encoded_texts.append(
 | |
|                 tokenizer.encode(full_text)
 | |
|             )
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         return self.encoded_texts[index]
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.data)
 | |
| 
 | |
| 
 | |
| def custom_collate_draft_1(
 | |
|     batch,
 | |
|     pad_token_id=50256,
 | |
|     device="cpu"
 | |
| ):
 | |
|     # Find the longest sequence in the batch
 | |
|     # and increase the max length by +1, which will add one extra
 | |
|     # padding token below
 | |
|     batch_max_length = max(len(item)+1 for item in batch)
 | |
| 
 | |
|     # Pad and prepare inputs
 | |
|     inputs_lst = []
 | |
| 
 | |
|     for item in batch:
 | |
|         new_item = item.copy()
 | |
|         # Add an <|endoftext|> token
 | |
|         new_item += [pad_token_id]
 | |
|         # Pad sequences to batch_max_length
 | |
|         padded = (
 | |
|             new_item + [pad_token_id] *
 | |
|             (batch_max_length - len(new_item))
 | |
|         )
 | |
|         # Via padded[:-1], we remove the extra padded token
 | |
|         # that has been added via the +1 setting in batch_max_length
 | |
|         # (the extra padding token will be relevant in later codes)
 | |
|         inputs = torch.tensor(padded[:-1])
 | |
|         inputs_lst.append(inputs)
 | |
| 
 | |
|     # Convert list of inputs to tensor and transfer to target device
 | |
|     inputs_tensor = torch.stack(inputs_lst).to(device)
 | |
|     return inputs_tensor
 | |
| 
 | |
| 
 | |
| def custom_collate_draft_2(
 | |
|     batch,
 | |
|     pad_token_id=50256,
 | |
|     device="cpu"
 | |
| ):
 | |
|     # Find the longest sequence in the batch
 | |
|     batch_max_length = max(len(item)+1 for item in batch)
 | |
| 
 | |
|     # Pad and prepare inputs
 | |
|     inputs_lst, targets_lst = [], []
 | |
| 
 | |
|     for item in batch:
 | |
|         new_item = item.copy()
 | |
|         # Add an <|endoftext|> token
 | |
|         new_item += [pad_token_id]
 | |
|         # Pad sequences to max_length
 | |
|         padded = (
 | |
|             new_item + [pad_token_id] *
 | |
|             (batch_max_length - len(new_item))
 | |
|         )
 | |
|         inputs = torch.tensor(padded[:-1])  # Truncate the last token for inputs
 | |
|         targets = torch.tensor(padded[1:])  # Shift +1 to the right for targets
 | |
|         inputs_lst.append(inputs)
 | |
|         targets_lst.append(targets)
 | |
| 
 | |
|     # Convert list of inputs to tensor and transfer to target device
 | |
|     inputs_tensor = torch.stack(inputs_lst).to(device)
 | |
|     targets_tensor = torch.stack(targets_lst).to(device)
 | |
|     return inputs_tensor, targets_tensor
 | |
| 
 | |
| 
 | |
| def custom_collate_fn(
 | |
|     batch,
 | |
|     pad_token_id=50256,
 | |
|     ignore_index=-100,
 | |
|     allowed_max_length=None,
 | |
|     device="cpu"
 | |
| ):
 | |
|     # Find the longest sequence in the batch
 | |
|     batch_max_length = max(len(item)+1 for item in batch)
 | |
| 
 | |
|     # Pad and prepare inputs and targets
 | |
|     inputs_lst, targets_lst = [], []
 | |
| 
 | |
|     for item in batch:
 | |
|         new_item = item.copy()
 | |
|         # Add an <|endoftext|> token
 | |
|         new_item += [pad_token_id]
 | |
|         # Pad sequences to max_length
 | |
|         padded = (
 | |
|             new_item + [pad_token_id] *
 | |
|             (batch_max_length - len(new_item))
 | |
|         )
 | |
|         inputs = torch.tensor(padded[:-1])  # Truncate the last token for inputs
 | |
|         targets = torch.tensor(padded[1:])  # Shift +1 to the right for targets
 | |
| 
 | |
|         # New: Replace all but the first padding tokens in targets by ignore_index
 | |
|         mask = targets == pad_token_id
 | |
|         indices = torch.nonzero(mask).squeeze()
 | |
|         if indices.numel() > 1:
 | |
|             targets[indices[1:]] = ignore_index
 | |
| 
 | |
|         # New: Optionally truncate to maximum sequence length
 | |
|         if allowed_max_length is not None:
 | |
|             inputs = inputs[:allowed_max_length]
 | |
|             targets = targets[:allowed_max_length]
 | |
| 
 | |
|         inputs_lst.append(inputs)
 | |
|         targets_lst.append(targets)
 | |
| 
 | |
|     # Convert list of inputs and targets to tensors and transfer to target device
 | |
|     inputs_tensor = torch.stack(inputs_lst).to(device)
 | |
|     targets_tensor = torch.stack(targets_lst).to(device)
 | |
| 
 | |
|     return inputs_tensor, targets_tensor
 | |
| 
 | |
| 
 | |
| def check_if_running(process_name):
 | |
|     running = False
 | |
|     for proc in psutil.process_iter(["name"]):
 | |
|         if process_name in proc.info["name"]:
 | |
|             running = True
 | |
|             break
 | |
|     return running
 | |
| 
 | |
| 
 | |
| def query_model(
 | |
|     prompt,
 | |
|     model="llama3",
 | |
|     url="http://localhost:11434/api/chat"
 | |
| ):
 | |
|     # Create the data payload as a dictionary
 | |
|     data = {
 | |
|         "model": model,
 | |
|         "messages": [
 | |
|             {"role": "user", "content": prompt}
 | |
|         ],
 | |
|         "options": {     # Settings below are required for deterministic responses
 | |
|             "seed": 123,
 | |
|             "temperature": 0,
 | |
|             "num_ctx": 2048
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     # Convert the dictionary to a JSON formatted string and encode it to bytes
 | |
|     payload = json.dumps(data).encode("utf-8")
 | |
| 
 | |
|     # Create a request object, setting the method to POST and adding necessary headers
 | |
|     request = urllib.request.Request(
 | |
|         url,
 | |
|         data=payload,
 | |
|         method="POST"
 | |
|     )
 | |
|     request.add_header("Content-Type", "application/json")
 | |
| 
 | |
|     # Send the request and capture the response
 | |
|     response_data = ""
 | |
|     with urllib.request.urlopen(request) as response:
 | |
|         # Read and decode the response
 | |
|         while True:
 | |
|             line = response.readline().decode("utf-8")
 | |
|             if not line:
 | |
|                 break
 | |
|             response_json = json.loads(line)
 | |
|             response_data += response_json["message"]["content"]
 | |
| 
 | |
|     return response_data
 | |
| 
 | |
| 
 | |
| def generate_model_scores(json_data, json_key, model="llama3"):
 | |
|     scores = []
 | |
|     for entry in tqdm(json_data, desc="Scoring entries"):
 | |
|         prompt = (
 | |
|             f"Given the input `{format_input(entry)}` "
 | |
|             f"and correct output `{entry['output']}`, "
 | |
|             f"score the model response `{entry[json_key]}`"
 | |
|             f" on a scale from 0 to 100, where 100 is the best score. "
 | |
|             f"Respond with the integer number only."
 | |
|         )
 | |
|         score = query_model(prompt, model)
 | |
|         try:
 | |
|             scores.append(int(score))
 | |
|         except ValueError:
 | |
|             print(f"Could not convert score: {score}")
 | |
|             continue
 | |
| 
 | |
|     return scores
 | 
