mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-30 17:29:59 +00:00 
			
		
		
		
	 79210eb393
			
		
	
	
		79210eb393
		
	
	
	
	
		
			
			* updated .gitignore * removed unused GELU import * fixed model_configs, fixed all tensors on same device * removed unused tiktoken * update * update hparam search * remove redundant tokenizer argument --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
		
			
				
	
	
		
			162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "<table style=\"width:100%\">\n",
 | |
|     "<tr>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<font size=\"2\">\n",
 | |
|     "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
 | |
|     "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
 | |
|     "</font>\n",
 | |
|     "</td>\n",
 | |
|     "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | |
|     "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
 | |
|     "</td>\n",
 | |
|     "</tr>\n",
 | |
|     "</table>"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## FLOPS Analysis"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "- FLOPs (Floating Point Operations Per Second) measure the computational complexity of neural network models by counting the number of floating-point operations executed\n",
 | |
|     "-  High FLOPs indicate more intensive computation and energy consumption"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "# pip install -r requirements-extra.txt"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "thop version: 0.1.1-2209072238\n",
 | |
|       "torch version: 2.2.2\n",
 | |
|       "tiktoken version: 0.5.1\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from importlib.metadata import version\n",
 | |
|     "\n",
 | |
|     "import matplotlib\n",
 | |
|     "import torch\n",
 | |
|     "\n",
 | |
|     "print(\"thop version:\", version(\"thop\"))\n",
 | |
|     "print(\"torch version:\", version(\"torch\"))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "metadata": {
 | |
|     "colab": {
 | |
|      "base_uri": "https://localhost:8080/"
 | |
|     },
 | |
|     "id": "GerIdRMXd6g9",
 | |
|     "outputId": "ccdd5c71-d221-4a84-f9bc-09557e77162d"
 | |
|    },
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "gpt-small (124M)  : 5.1e+11 FLOPS\n",
 | |
|       "gpt-medium (355M) : 1.4e+12 FLOPS\n",
 | |
|       "gpt-large (774M)  : 3.2e+12 FLOPS\n",
 | |
|       "gpt-xl (1558M)    : 6.4e+12 FLOPS\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "import torch\n",
 | |
|     "from thop import profile\n",
 | |
|     "\n",
 | |
|     "from previous_chapters import GPTModel\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "BASE_CONFIG = {\n",
 | |
|     "    \"vocab_size\": 50257,     # Vocabulary size\n",
 | |
|     "    \"context_length\": 1024,  # Context length\n",
 | |
|     "    \"drop_rate\": 0.0,        # Dropout rate\n",
 | |
|     "    \"qkv_bias\": True         # Query-key-value bias\n",
 | |
|     "}\n",
 | |
|     "\n",
 | |
|     "model_configs = {\n",
 | |
|     "    \"gpt-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
 | |
|     "    \"gpt-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
 | |
|     "    \"gpt-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
 | |
|     "    \"gpt-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
 | |
|     "}\n",
 | |
|     "\n",
 | |
|     "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
 | |
|     "input_tensor = torch.randint(0, 50257, (2, 1024)).to(device)\n",
 | |
|     "\n",
 | |
|     "for size in model_configs:\n",
 | |
|     "    BASE_CONFIG.update(model_configs[size])\n",
 | |
|     "    \n",
 | |
|     "    model = GPTModel(BASE_CONFIG).bfloat16()\n",
 | |
|     "    model.to(device)\n",
 | |
|     "\n",
 | |
|     "    # MACS = multiply-accumulate operations\n",
 | |
|     "    # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
 | |
|     "    macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
 | |
|     "    flops = 2*macs\n",
 | |
|     "    print(f\"{size:18}: {flops:.1e} FLOPS\")\n",
 | |
|     "    \n",
 | |
|     "    del model\n",
 | |
|     "    torch.cuda.empty_cache()"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "accelerator": "GPU",
 | |
|   "colab": {
 | |
|    "gpuType": "A100",
 | |
|    "machine_shape": "hm",
 | |
|    "provenance": []
 | |
|   },
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.11.4"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 4
 | |
| }
 |