mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-03 19:30:26 +00:00 
			
		
		
		
	* updated .gitignore * removed unused GELU import * fixed model_configs, fixed all tensors on same device * removed unused tiktoken * update * update hparam search * remove redundant tokenizer argument --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
		
			
				
	
	
		
			162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						|
 "cells": [
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "<table style=\"width:100%\">\n",
 | 
						|
    "<tr>\n",
 | 
						|
    "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | 
						|
    "<font size=\"2\">\n",
 | 
						|
    "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
 | 
						|
    "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
 | 
						|
    "</font>\n",
 | 
						|
    "</td>\n",
 | 
						|
    "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | 
						|
    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
 | 
						|
    "</td>\n",
 | 
						|
    "</tr>\n",
 | 
						|
    "</table>"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "## FLOPS Analysis"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "markdown",
 | 
						|
   "metadata": {},
 | 
						|
   "source": [
 | 
						|
    "- FLOPs (Floating Point Operations Per Second) measure the computational complexity of neural network models by counting the number of floating-point operations executed\n",
 | 
						|
    "-  High FLOPs indicate more intensive computation and energy consumption"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 1,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [],
 | 
						|
   "source": [
 | 
						|
    "# pip install -r requirements-extra.txt"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 2,
 | 
						|
   "metadata": {},
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "thop version: 0.1.1-2209072238\n",
 | 
						|
      "torch version: 2.2.2\n",
 | 
						|
      "tiktoken version: 0.5.1\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "from importlib.metadata import version\n",
 | 
						|
    "\n",
 | 
						|
    "import matplotlib\n",
 | 
						|
    "import torch\n",
 | 
						|
    "\n",
 | 
						|
    "print(\"thop version:\", version(\"thop\"))\n",
 | 
						|
    "print(\"torch version:\", version(\"torch\"))"
 | 
						|
   ]
 | 
						|
  },
 | 
						|
  {
 | 
						|
   "cell_type": "code",
 | 
						|
   "execution_count": 3,
 | 
						|
   "metadata": {
 | 
						|
    "colab": {
 | 
						|
     "base_uri": "https://localhost:8080/"
 | 
						|
    },
 | 
						|
    "id": "GerIdRMXd6g9",
 | 
						|
    "outputId": "ccdd5c71-d221-4a84-f9bc-09557e77162d"
 | 
						|
   },
 | 
						|
   "outputs": [
 | 
						|
    {
 | 
						|
     "name": "stdout",
 | 
						|
     "output_type": "stream",
 | 
						|
     "text": [
 | 
						|
      "gpt-small (124M)  : 5.1e+11 FLOPS\n",
 | 
						|
      "gpt-medium (355M) : 1.4e+12 FLOPS\n",
 | 
						|
      "gpt-large (774M)  : 3.2e+12 FLOPS\n",
 | 
						|
      "gpt-xl (1558M)    : 6.4e+12 FLOPS\n"
 | 
						|
     ]
 | 
						|
    }
 | 
						|
   ],
 | 
						|
   "source": [
 | 
						|
    "import torch\n",
 | 
						|
    "from thop import profile\n",
 | 
						|
    "\n",
 | 
						|
    "from previous_chapters import GPTModel\n",
 | 
						|
    "\n",
 | 
						|
    "\n",
 | 
						|
    "BASE_CONFIG = {\n",
 | 
						|
    "    \"vocab_size\": 50257,     # Vocabulary size\n",
 | 
						|
    "    \"context_length\": 1024,  # Context length\n",
 | 
						|
    "    \"drop_rate\": 0.0,        # Dropout rate\n",
 | 
						|
    "    \"qkv_bias\": True         # Query-key-value bias\n",
 | 
						|
    "}\n",
 | 
						|
    "\n",
 | 
						|
    "model_configs = {\n",
 | 
						|
    "    \"gpt-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
 | 
						|
    "    \"gpt-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
 | 
						|
    "    \"gpt-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
 | 
						|
    "    \"gpt-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
 | 
						|
    "}\n",
 | 
						|
    "\n",
 | 
						|
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
 | 
						|
    "input_tensor = torch.randint(0, 50257, (2, 1024)).to(device)\n",
 | 
						|
    "\n",
 | 
						|
    "for size in model_configs:\n",
 | 
						|
    "    BASE_CONFIG.update(model_configs[size])\n",
 | 
						|
    "    \n",
 | 
						|
    "    model = GPTModel(BASE_CONFIG).bfloat16()\n",
 | 
						|
    "    model.to(device)\n",
 | 
						|
    "\n",
 | 
						|
    "    # MACS = multiply-accumulate operations\n",
 | 
						|
    "    # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
 | 
						|
    "    macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
 | 
						|
    "    flops = 2*macs\n",
 | 
						|
    "    print(f\"{size:18}: {flops:.1e} FLOPS\")\n",
 | 
						|
    "    \n",
 | 
						|
    "    del model\n",
 | 
						|
    "    torch.cuda.empty_cache()"
 | 
						|
   ]
 | 
						|
  }
 | 
						|
 ],
 | 
						|
 "metadata": {
 | 
						|
  "accelerator": "GPU",
 | 
						|
  "colab": {
 | 
						|
   "gpuType": "A100",
 | 
						|
   "machine_shape": "hm",
 | 
						|
   "provenance": []
 | 
						|
  },
 | 
						|
  "kernelspec": {
 | 
						|
   "display_name": "Python 3 (ipykernel)",
 | 
						|
   "language": "python",
 | 
						|
   "name": "python3"
 | 
						|
  },
 | 
						|
  "language_info": {
 | 
						|
   "codemirror_mode": {
 | 
						|
    "name": "ipython",
 | 
						|
    "version": 3
 | 
						|
   },
 | 
						|
   "file_extension": ".py",
 | 
						|
   "mimetype": "text/x-python",
 | 
						|
   "name": "python",
 | 
						|
   "nbconvert_exporter": "python",
 | 
						|
   "pygments_lexer": "ipython3",
 | 
						|
   "version": "3.11.4"
 | 
						|
  }
 | 
						|
 },
 | 
						|
 "nbformat": 4,
 | 
						|
 "nbformat_minor": 4
 | 
						|
}
 |