mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 01:41:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			173 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "# The Main Data Loading Pipeline Summarized"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "The complete chapter code is located in [ch02.ipynb](./ch02.ipynb).\n",
 | |
|     "\n",
 | |
|     "This notebook contains the main takeaway, the data loading pipeline without the intermediate steps."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "93804da5-372b-45ff-9ef4-8398ba1dd78e",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "torch version: 2.0.1\n",
 | |
|       "tiktoken version: 0.5.1\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "from importlib.metadata import version\n",
 | |
|     "\n",
 | |
|     "import tiktoken\n",
 | |
|     "import torch\n",
 | |
|     "\n",
 | |
|     "print(\"torch version:\", version(\"torch\"))\n",
 | |
|     "print(\"tiktoken version:\", version(\"tiktoken\"))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import tiktoken\n",
 | |
|     "import torch\n",
 | |
|     "from torch.utils.data import Dataset, DataLoader\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "class GPTDatasetV1(Dataset):\n",
 | |
|     "    def __init__(self, txt, tokenizer, max_length, stride):\n",
 | |
|     "        self.tokenizer = tokenizer\n",
 | |
|     "        self.input_ids = []\n",
 | |
|     "        self.target_ids = []\n",
 | |
|     "\n",
 | |
|     "        # Tokenize the entire text\n",
 | |
|     "        token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
 | |
|     "\n",
 | |
|     "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
 | |
|     "        for i in range(0, len(token_ids) - max_length, stride):\n",
 | |
|     "            input_chunk = token_ids[i:i + max_length]\n",
 | |
|     "            target_chunk = token_ids[i + 1: i + max_length + 1]\n",
 | |
|     "            self.input_ids.append(torch.tensor(input_chunk))\n",
 | |
|     "            self.target_ids.append(torch.tensor(target_chunk))\n",
 | |
|     "\n",
 | |
|     "    def __len__(self):\n",
 | |
|     "        return len(self.input_ids)\n",
 | |
|     "\n",
 | |
|     "    def __getitem__(self, idx):\n",
 | |
|     "        return self.input_ids[idx], self.target_ids[idx]\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "def create_dataloader_v1(txt, batch_size=4, max_length=256, \n",
 | |
|     "                         stride=128, shuffle=True, drop_last=True):\n",
 | |
|     "    # Initialize the tokenizer\n",
 | |
|     "    tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | |
|     "\n",
 | |
|     "    # Create dataset\n",
 | |
|     "    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
 | |
|     "\n",
 | |
|     "    # Create dataloader\n",
 | |
|     "    dataloader = DataLoader(\n",
 | |
|     "        dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)\n",
 | |
|     "\n",
 | |
|     "    return dataloader\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
 | |
|     "    raw_text = f.read()\n",
 | |
|     "\n",
 | |
|     "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | |
|     "encoded_text = tokenizer.encode(raw_text)\n",
 | |
|     "\n",
 | |
|     "vocab_size = 50257\n",
 | |
|     "output_dim = 256\n",
 | |
|     "block_size = 1024\n",
 | |
|     "\n",
 | |
|     "\n",
 | |
|     "token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
 | |
|     "pos_embedding_layer = torch.nn.Embedding(block_size, output_dim)\n",
 | |
|     "\n",
 | |
|     "max_length = 4\n",
 | |
|     "dataloader = create_dataloader_v1(raw_text, batch_size=8, max_length=max_length, stride=max_length)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "for batch in dataloader:\n",
 | |
|     "    x, y = batch\n",
 | |
|     "\n",
 | |
|     "    token_embeddings = token_embedding_layer(x)\n",
 | |
|     "    pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
 | |
|     "\n",
 | |
|     "    input_embeddings = token_embeddings + pos_embeddings\n",
 | |
|     "\n",
 | |
|     "    break"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "torch.Size([8, 4, 256])\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "print(input_embeddings.shape)"
 | |
|    ]
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.10.12"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 | 
