mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 03:40:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			143 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | 
						|
# Source for "Build a Large Language Model From Scratch"
 | 
						|
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | 
						|
# Code: https://github.com/rasbt/LLMs-from-scratch
 | 
						|
 | 
						|
 | 
						|
import os
 | 
						|
import urllib.request
 | 
						|
 | 
						|
# import requests
 | 
						|
import json
 | 
						|
import numpy as np
 | 
						|
import tensorflow as tf
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
 | 
						|
def download_and_load_gpt2(model_size, models_dir):
 | 
						|
    # Validate model size
 | 
						|
    allowed_sizes = ("124M", "355M", "774M", "1558M")
 | 
						|
    if model_size not in allowed_sizes:
 | 
						|
        raise ValueError(f"Model size not in {allowed_sizes}")
 | 
						|
 | 
						|
    # Define paths
 | 
						|
    model_dir = os.path.join(models_dir, model_size)
 | 
						|
    base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
 | 
						|
    filenames = [
 | 
						|
        "checkpoint", "encoder.json", "hparams.json",
 | 
						|
        "model.ckpt.data-00000-of-00001", "model.ckpt.index",
 | 
						|
        "model.ckpt.meta", "vocab.bpe"
 | 
						|
    ]
 | 
						|
 | 
						|
    # Download files
 | 
						|
    os.makedirs(model_dir, exist_ok=True)
 | 
						|
    for filename in filenames:
 | 
						|
        file_url = os.path.join(base_url, model_size, filename)
 | 
						|
        file_path = os.path.join(model_dir, filename)
 | 
						|
        download_file(file_url, file_path)
 | 
						|
 | 
						|
    # Load settings and params
 | 
						|
    tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
 | 
						|
    settings = json.load(open(os.path.join(model_dir, "hparams.json")))
 | 
						|
    params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
 | 
						|
 | 
						|
    return settings, params
 | 
						|
 | 
						|
 | 
						|
def download_file(url, destination):
 | 
						|
    # Send a GET request to download the file
 | 
						|
 | 
						|
    try:
 | 
						|
        with urllib.request.urlopen(url) as response:
 | 
						|
            # Get the total file size from headers, defaulting to 0 if not present
 | 
						|
            file_size = int(response.headers.get("Content-Length", 0))
 | 
						|
 | 
						|
            # Check if file exists and has the same size
 | 
						|
            if os.path.exists(destination):
 | 
						|
                file_size_local = os.path.getsize(destination)
 | 
						|
                if file_size == file_size_local:
 | 
						|
                    print(f"File already exists and is up-to-date: {destination}")
 | 
						|
                    return
 | 
						|
 | 
						|
            # Define the block size for reading the file
 | 
						|
            block_size = 1024  # 1 Kilobyte
 | 
						|
 | 
						|
            # Initialize the progress bar with total file size
 | 
						|
            progress_bar_description = os.path.basename(url)  # Extract filename from URL
 | 
						|
            with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
 | 
						|
                # Open the destination file in binary write mode
 | 
						|
                with open(destination, "wb") as file:
 | 
						|
                    # Read the file in chunks and write to destination
 | 
						|
                    while True:
 | 
						|
                        chunk = response.read(block_size)
 | 
						|
                        if not chunk:
 | 
						|
                            break
 | 
						|
                        file.write(chunk)
 | 
						|
                        progress_bar.update(len(chunk))  # Update progress bar
 | 
						|
    except urllib.error.HTTPError:
 | 
						|
        s = (
 | 
						|
            f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
 | 
						|
            "\nor the requested file is temporarily unavailable.\nPlease visit the following website"
 | 
						|
            " for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
 | 
						|
        print(s)
 | 
						|
 | 
						|
 | 
						|
# Alternative way using `requests`
 | 
						|
"""
 | 
						|
def download_file(url, destination):
 | 
						|
    # Send a GET request to download the file in streaming mode
 | 
						|
    response = requests.get(url, stream=True)
 | 
						|
 | 
						|
    # Get the total file size from headers, defaulting to 0 if not present
 | 
						|
    file_size = int(response.headers.get("content-length", 0))
 | 
						|
 | 
						|
    # Check if file exists and has the same size
 | 
						|
    if os.path.exists(destination):
 | 
						|
        file_size_local = os.path.getsize(destination)
 | 
						|
        if file_size == file_size_local:
 | 
						|
            print(f"File already exists and is up-to-date: {destination}")
 | 
						|
            return
 | 
						|
 | 
						|
    # Define the block size for reading the file
 | 
						|
    block_size = 1024  # 1 Kilobyte
 | 
						|
 | 
						|
    # Initialize the progress bar with total file size
 | 
						|
    progress_bar_description = url.split("/")[-1]  # Extract filename from URL
 | 
						|
    with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
 | 
						|
        # Open the destination file in binary write mode
 | 
						|
        with open(destination, "wb") as file:
 | 
						|
            # Iterate over the file data in chunks
 | 
						|
            for chunk in response.iter_content(block_size):
 | 
						|
                progress_bar.update(len(chunk))  # Update progress bar
 | 
						|
                file.write(chunk)  # Write the chunk to the file
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
 | 
						|
    # Initialize parameters dictionary with empty blocks for each layer
 | 
						|
    params = {"blocks": [{} for _ in range(settings["n_layer"])]}
 | 
						|
 | 
						|
    # Iterate over each variable in the checkpoint
 | 
						|
    for name, _ in tf.train.list_variables(ckpt_path):
 | 
						|
        # Load the variable and remove singleton dimensions
 | 
						|
        variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
 | 
						|
 | 
						|
        # Process the variable name to extract relevant parts
 | 
						|
        variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix
 | 
						|
 | 
						|
        # Identify the target dictionary for the variable
 | 
						|
        target_dict = params
 | 
						|
        if variable_name_parts[0].startswith("h"):
 | 
						|
            layer_number = int(variable_name_parts[0][1:])
 | 
						|
            target_dict = params["blocks"][layer_number]
 | 
						|
 | 
						|
        # Recursively access or create nested dictionaries
 | 
						|
        for key in variable_name_parts[1:-1]:
 | 
						|
            target_dict = target_dict.setdefault(key, {})
 | 
						|
 | 
						|
        # Assign the variable array to the last key
 | 
						|
        last_key = variable_name_parts[-1]
 | 
						|
        target_dict[last_key] = variable_array
 | 
						|
 | 
						|
    return params
 |