mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
309 lines
12 KiB
Python
309 lines
12 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
import json
|
|
import numpy as np
|
|
import os
|
|
import urllib.request
|
|
|
|
# import requests
|
|
import tensorflow as tf
|
|
import tiktoken
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
# Import from local files
|
|
from previous_chapters import GPTModel
|
|
|
|
|
|
def text_to_token_ids(text, tokenizer):
|
|
encoded = tokenizer.encode(text)
|
|
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
|
return encoded_tensor
|
|
|
|
|
|
def token_ids_to_text(token_ids, tokenizer):
|
|
flat = token_ids.squeeze(0) # remove batch dimension
|
|
return tokenizer.decode(flat.tolist())
|
|
|
|
|
|
def download_and_load_gpt2(model_size, models_dir):
|
|
# Validate model size
|
|
allowed_sizes = ("124M", "355M", "774M", "1558M")
|
|
if model_size not in allowed_sizes:
|
|
raise ValueError(f"Model size not in {allowed_sizes}")
|
|
|
|
# Define paths
|
|
model_dir = os.path.join(models_dir, model_size)
|
|
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
|
|
filenames = [
|
|
"checkpoint", "encoder.json", "hparams.json",
|
|
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
|
|
"model.ckpt.meta", "vocab.bpe"
|
|
]
|
|
|
|
# Download files
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
for filename in filenames:
|
|
file_url = os.path.join(base_url, model_size, filename)
|
|
file_path = os.path.join(model_dir, filename)
|
|
download_file(file_url, file_path)
|
|
|
|
# Load settings and params
|
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
|
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
|
|
|
return settings, params
|
|
|
|
|
|
"""
|
|
def download_file(url, destination):
|
|
# Send a GET request to download the file in streaming mode
|
|
response = requests.get(url, stream=True)
|
|
|
|
# Get the total file size from headers, defaulting to 0 if not present
|
|
file_size = int(response.headers.get("content-length", 0))
|
|
|
|
# Check if file exists and has the same size
|
|
if os.path.exists(destination):
|
|
file_size_local = os.path.getsize(destination)
|
|
if file_size == file_size_local:
|
|
print(f"File already exists and is up-to-date: {destination}")
|
|
return
|
|
|
|
# Define the block size for reading the file
|
|
block_size = 1024 # 1 Kilobyte
|
|
|
|
# Initialize the progress bar with total file size
|
|
progress_bar_description = url.split("/")[-1] # Extract filename from URL
|
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
|
# Open the destination file in binary write mode
|
|
with open(destination, "wb") as file:
|
|
# Iterate over the file data in chunks
|
|
for chunk in response.iter_content(block_size):
|
|
progress_bar.update(len(chunk)) # Update progress bar
|
|
file.write(chunk) # Write the chunk to the file
|
|
"""
|
|
|
|
|
|
def download_file(url, destination):
|
|
# Send a GET request to download the file
|
|
with urllib.request.urlopen(url) as response:
|
|
# Get the total file size from headers, defaulting to 0 if not present
|
|
file_size = int(response.headers.get("Content-Length", 0))
|
|
|
|
# Check if file exists and has the same size
|
|
if os.path.exists(destination):
|
|
file_size_local = os.path.getsize(destination)
|
|
if file_size == file_size_local:
|
|
print(f"File already exists and is up-to-date: {destination}")
|
|
return
|
|
|
|
# Define the block size for reading the file
|
|
block_size = 1024 # 1 Kilobyte
|
|
|
|
# Initialize the progress bar with total file size
|
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
|
# Open the destination file in binary write mode
|
|
with open(destination, "wb") as file:
|
|
# Read the file in chunks and write to destination
|
|
while True:
|
|
chunk = response.read(block_size)
|
|
if not chunk:
|
|
break
|
|
file.write(chunk)
|
|
progress_bar.update(len(chunk)) # Update progress bar
|
|
|
|
|
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
|
# Initialize parameters dictionary with empty blocks for each layer
|
|
params = {"blocks": [{} for _ in range(settings["n_layer"])]}
|
|
|
|
# Iterate over each variable in the checkpoint
|
|
for name, _ in tf.train.list_variables(ckpt_path):
|
|
# Load the variable and remove singleton dimensions
|
|
variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
|
|
|
|
# Process the variable name to extract relevant parts
|
|
variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
|
|
|
|
# Identify the target dictionary for the variable
|
|
target_dict = params
|
|
if variable_name_parts[0].startswith("h"):
|
|
layer_number = int(variable_name_parts[0][1:])
|
|
target_dict = params["blocks"][layer_number]
|
|
|
|
# Recursively access or create nested dictionaries
|
|
for key in variable_name_parts[1:-1]:
|
|
target_dict = target_dict.setdefault(key, {})
|
|
|
|
# Assign the variable array to the last key
|
|
last_key = variable_name_parts[-1]
|
|
target_dict[last_key] = variable_array
|
|
|
|
return params
|
|
|
|
|
|
def assign(left, right):
|
|
if left.shape != right.shape:
|
|
raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
|
|
return torch.nn.Parameter(torch.tensor(right))
|
|
|
|
|
|
def load_weights_into_gpt(gpt, params):
|
|
gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params["wpe"])
|
|
gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params["wte"])
|
|
|
|
for b in range(len(params["blocks"])):
|
|
q_w, k_w, v_w = np.split(
|
|
(params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
|
|
gpt.trf_blocks[b].att.W_query.weight = assign(
|
|
gpt.trf_blocks[b].att.W_query.weight, q_w.T)
|
|
gpt.trf_blocks[b].att.W_key.weight = assign(
|
|
gpt.trf_blocks[b].att.W_key.weight, k_w.T)
|
|
gpt.trf_blocks[b].att.W_value.weight = assign(
|
|
gpt.trf_blocks[b].att.W_value.weight, v_w.T)
|
|
|
|
q_b, k_b, v_b = np.split(
|
|
(params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
|
|
gpt.trf_blocks[b].att.W_query.bias = assign(
|
|
gpt.trf_blocks[b].att.W_query.bias, q_b)
|
|
gpt.trf_blocks[b].att.W_key.bias = assign(
|
|
gpt.trf_blocks[b].att.W_key.bias, k_b)
|
|
gpt.trf_blocks[b].att.W_value.bias = assign(
|
|
gpt.trf_blocks[b].att.W_value.bias, v_b)
|
|
|
|
gpt.trf_blocks[b].att.out_proj.weight = assign(
|
|
gpt.trf_blocks[b].att.out_proj.weight,
|
|
params["blocks"][b]["attn"]["c_proj"]["w"].T)
|
|
gpt.trf_blocks[b].att.out_proj.bias = assign(
|
|
gpt.trf_blocks[b].att.out_proj.bias,
|
|
params["blocks"][b]["attn"]["c_proj"]["b"])
|
|
|
|
gpt.trf_blocks[b].ff.layers[0].weight = assign(
|
|
gpt.trf_blocks[b].ff.layers[0].weight,
|
|
params["blocks"][b]["mlp"]["c_fc"]["w"].T)
|
|
gpt.trf_blocks[b].ff.layers[0].bias = assign(
|
|
gpt.trf_blocks[b].ff.layers[0].bias,
|
|
params["blocks"][b]["mlp"]["c_fc"]["b"])
|
|
gpt.trf_blocks[b].ff.layers[2].weight = assign(
|
|
gpt.trf_blocks[b].ff.layers[2].weight,
|
|
params["blocks"][b]["mlp"]["c_proj"]["w"].T)
|
|
gpt.trf_blocks[b].ff.layers[2].bias = assign(
|
|
gpt.trf_blocks[b].ff.layers[2].bias,
|
|
params["blocks"][b]["mlp"]["c_proj"]["b"])
|
|
|
|
gpt.trf_blocks[b].norm1.scale = assign(
|
|
gpt.trf_blocks[b].norm1.scale,
|
|
params["blocks"][b]["ln_1"]["g"])
|
|
gpt.trf_blocks[b].norm1.shift = assign(
|
|
gpt.trf_blocks[b].norm1.shift,
|
|
params["blocks"][b]["ln_1"]["b"])
|
|
gpt.trf_blocks[b].norm2.scale = assign(
|
|
gpt.trf_blocks[b].norm2.scale,
|
|
params["blocks"][b]["ln_2"]["g"])
|
|
gpt.trf_blocks[b].norm2.shift = assign(
|
|
gpt.trf_blocks[b].norm2.shift,
|
|
params["blocks"][b]["ln_2"]["b"])
|
|
|
|
gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
|
|
gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
|
|
gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
|
|
|
|
|
|
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
|
|
|
|
# For-loop is the same as before: Get logits, and only focus on last time step
|
|
for _ in range(max_new_tokens):
|
|
idx_cond = idx[:, -context_size:]
|
|
with torch.no_grad():
|
|
logits = model(idx_cond)
|
|
logits = logits[:, -1, :]
|
|
|
|
# New: Filter logits with top_k sampling
|
|
if top_k is not None:
|
|
# Keep only top_k values
|
|
top_logits, _ = torch.topk(logits, top_k)
|
|
min_val = top_logits[:, -1]
|
|
logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits)
|
|
|
|
# New: Apply temperature scaling
|
|
if temperature > 0.0:
|
|
logits = logits / temperature
|
|
|
|
# Apply softmax to get probabilities
|
|
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
|
|
|
# Sample from the distribution
|
|
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
|
|
|
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
|
else:
|
|
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
|
|
|
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
|
|
break
|
|
|
|
# Same as before: append sampled index to the running sequence
|
|
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
|
|
|
return idx
|
|
|
|
|
|
def main(gpt_config, input_prompt, model_size):
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
|
|
|
gpt = GPTModel(gpt_config)
|
|
load_weights_into_gpt(gpt, params)
|
|
gpt.to(device)
|
|
gpt.eval()
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
torch.manual_seed(123)
|
|
|
|
token_ids = generate(
|
|
model=gpt,
|
|
idx=text_to_token_ids(input_prompt, tokenizer).to(device),
|
|
max_new_tokens=25,
|
|
context_size=gpt_config["context_length"],
|
|
top_k=50,
|
|
temperature=1.0
|
|
)
|
|
|
|
print("Output text:\n", token_ids_to_text(token_ids, tokenizer))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
torch.manual_seed(123)
|
|
|
|
CHOOSE_MODEL = "gpt2-small (124M)"
|
|
INPUT_PROMPT = "Every effort moves you"
|
|
|
|
BASE_CONFIG = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 1024, # Context length
|
|
"drop_rate": 0.0, # Dropout rate
|
|
"qkv_bias": True # Query-key-value bias
|
|
}
|
|
|
|
model_configs = {
|
|
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
|
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
|
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
|
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
|
}
|
|
|
|
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
|
|
|
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
|
|
|
main(BASE_CONFIG, INPUT_PROMPT, model_size)
|