mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-17 18:45:29 +00:00
356 lines
13 KiB
Python
356 lines
13 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
# This file collects all the relevant code that we covered thus far
|
|
# throughout Chapters 3-4, adapted to use Multi-Head Latent Attention (MLA).
|
|
# This file can be run as a standalone script.
|
|
|
|
import argparse
|
|
import time
|
|
import tiktoken
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
#####################################
|
|
# Multi-Head Latent Attention
|
|
#####################################
|
|
# The MLA code below is inspired by
|
|
# https://huggingface.co/bird-of-paradise/deepseek-mla
|
|
|
|
|
|
class MultiHeadLatentAttention(nn.Module):
|
|
def __init__(self, d_in, d_out, dropout, num_heads,
|
|
qkv_bias=False, latent_dim=None):
|
|
super().__init__()
|
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
|
|
|
self.d_out = d_out
|
|
self.num_heads = num_heads
|
|
self.head_dim = d_out // num_heads
|
|
self.latent_dim = latent_dim if latent_dim is not None else max(16, d_out // 8)
|
|
|
|
# Projections
|
|
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) # per-head Q
|
|
self.W_DKV = nn.Linear(d_in, self.latent_dim, bias=qkv_bias) # down to latent C
|
|
self.W_UK = nn.Linear(self.latent_dim, d_out, bias=qkv_bias) # latent -> per-head K
|
|
self.W_UV = nn.Linear(self.latent_dim, d_out, bias=qkv_bias) # latent -> per-head V
|
|
|
|
self.out_proj = nn.Linear(d_out, d_out)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
####################################################
|
|
# Latent-KV cache
|
|
self.register_buffer("cache_c_kv", None, persistent=False)
|
|
self.ptr_current_pos = 0
|
|
####################################################
|
|
|
|
def reset_cache(self):
|
|
self.cache_c_kv = None
|
|
self.ptr_current_pos = 0
|
|
|
|
@staticmethod
|
|
def _reshape_to_heads(x, num_heads, head_dim):
|
|
# (b, T, d_out) -> (b, num_heads, T, head_dim)
|
|
bsz, num_tokens, _ = x.shape
|
|
return x.view(bsz, num_tokens, num_heads, head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(self, x, use_cache=False):
|
|
b, num_tokens, _ = x.shape
|
|
num_heads = self.num_heads
|
|
head_dim = self.head_dim
|
|
|
|
# 1) Project to queries (per-token, per-head) and new latent chunk
|
|
queries_all = self.W_query(x) # (b, T, d_out)
|
|
latent_new = self.W_DKV(x) # (b, T, latent_dim)
|
|
|
|
# 2) Update latent cache and choose latent sequence to up-project
|
|
if use_cache:
|
|
if self.cache_c_kv is None:
|
|
latent_total = latent_new
|
|
else:
|
|
latent_total = torch.cat([self.cache_c_kv, latent_new], dim=1)
|
|
self.cache_c_kv = latent_total
|
|
else:
|
|
latent_total = latent_new
|
|
|
|
# 3) Up-project latent to per-head keys/values (then split into heads)
|
|
keys_all = self.W_UK(latent_total) # (b, T_k_total, d_out)
|
|
values_all = self.W_UV(latent_total) # (b, T_k_total, d_out)
|
|
|
|
# 4) Reshape to heads
|
|
queries = self._reshape_to_heads(queries_all, num_heads, head_dim)
|
|
keys = self._reshape_to_heads(keys_all, num_heads, head_dim)
|
|
values = self._reshape_to_heads(values_all, num_heads, head_dim)
|
|
|
|
# 5) Scaled dot-product attention with causal mask
|
|
attn_scores = torch.matmul(queries, keys.transpose(-2, -1))
|
|
|
|
num_tokens_Q = queries.shape[-2]
|
|
num_tokens_K = keys.shape[-2]
|
|
device = queries.device
|
|
if use_cache:
|
|
q_positions = torch.arange(
|
|
self.ptr_current_pos,
|
|
self.ptr_current_pos + num_tokens_Q,
|
|
device=device,
|
|
dtype=torch.long,
|
|
)
|
|
self.ptr_current_pos += num_tokens_Q
|
|
else:
|
|
q_positions = torch.arange(num_tokens_Q, device=device, dtype=torch.long)
|
|
self.ptr_current_pos = 0
|
|
k_positions = torch.arange(num_tokens_K, device=device, dtype=torch.long)
|
|
mask_bool = q_positions.unsqueeze(-1) < k_positions.unsqueeze(0)
|
|
|
|
# Use the mask to fill attention scores
|
|
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
|
attn_weights = self.dropout(attn_weights)
|
|
|
|
# Shape: (b, num_tokens, num_heads, head_dim)
|
|
context_vec = (attn_weights @ values).transpose(1, 2)
|
|
|
|
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
|
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
|
context_vec = self.out_proj(context_vec) # optional projection
|
|
|
|
return context_vec
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, emb_dim):
|
|
super().__init__()
|
|
self.eps = 1e-5
|
|
self.scale = nn.Parameter(torch.ones(emb_dim))
|
|
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
|
|
|
def forward(self, x):
|
|
mean = x.mean(dim=-1, keepdim=True)
|
|
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
|
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
|
return self.scale * norm_x + self.shift
|
|
|
|
|
|
class GELU(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return 0.5 * x * (1 + torch.tanh(
|
|
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
|
(x + 0.044715 * torch.pow(x, 3))
|
|
))
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
|
GELU(),
|
|
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.att = MultiHeadLatentAttention(
|
|
d_in=cfg["emb_dim"],
|
|
d_out=cfg["emb_dim"],
|
|
num_heads=cfg["n_heads"],
|
|
dropout=cfg["drop_rate"],
|
|
qkv_bias=cfg["qkv_bias"],
|
|
latent_dim=cfg["latent_dim"])
|
|
|
|
self.ff = FeedForward(cfg)
|
|
self.norm1 = LayerNorm(cfg["emb_dim"])
|
|
self.norm2 = LayerNorm(cfg["emb_dim"])
|
|
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
|
|
|
def forward(self, x, use_cache=False):
|
|
# Shortcut connection for attention block
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
|
|
# x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
|
####################################################
|
|
# KV cache-related
|
|
x = self.att(x, use_cache=use_cache)
|
|
####################################################
|
|
|
|
x = self.drop_shortcut(x)
|
|
x = x + shortcut # Add the original input back
|
|
|
|
# Shortcut connection for feed-forward block
|
|
shortcut = x
|
|
x = self.norm2(x)
|
|
x = self.ff(x)
|
|
x = self.drop_shortcut(x)
|
|
x = x + shortcut # Add the original input back
|
|
|
|
return x
|
|
|
|
|
|
class GPTModel(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
|
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
|
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
|
|
|
# self.trf_blocks = nn.Sequential(
|
|
# *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
####################################################
|
|
# KV cache-related
|
|
self.trf_blocks = nn.ModuleList(
|
|
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
|
|
|
self.current_pos = 0
|
|
####################################################
|
|
|
|
self.final_norm = LayerNorm(cfg["emb_dim"])
|
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
|
|
|
def forward(self, in_idx, use_cache=False):
|
|
batch_size, seq_len = in_idx.shape
|
|
tok_embeds = self.tok_emb(in_idx)
|
|
|
|
# pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
|
|
|
####################################################
|
|
# KV cache-related
|
|
if use_cache:
|
|
pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long)
|
|
self.current_pos += seq_len
|
|
else:
|
|
pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
|
|
pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
|
|
####################################################
|
|
|
|
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
|
x = self.drop_emb(x)
|
|
|
|
# x = self.trf_blocks(x)
|
|
####################################################
|
|
# KV cache-related
|
|
for blk in self.trf_blocks:
|
|
x = blk(x, use_cache=use_cache)
|
|
####################################################
|
|
|
|
x = self.final_norm(x)
|
|
logits = self.out_head(x)
|
|
return logits
|
|
|
|
####################################################
|
|
# KV cache-related
|
|
def reset_kv_cache(self):
|
|
for blk in self.trf_blocks:
|
|
blk.att.reset_cache()
|
|
self.current_pos = 0
|
|
####################################################
|
|
|
|
|
|
def generate_text_simple_cached(model, idx, max_new_tokens,
|
|
context_size=None, use_cache=True):
|
|
model.eval()
|
|
ctx_len = context_size or model.pos_emb.num_embeddings
|
|
|
|
with torch.no_grad():
|
|
if use_cache:
|
|
# Init cache with full prompt
|
|
model.reset_kv_cache()
|
|
logits = model(idx[:, -ctx_len:], use_cache=True)
|
|
|
|
for _ in range(max_new_tokens):
|
|
# a) pick the token with the highest log-probability (greedy sampling)
|
|
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
|
# b) append it to the running sequence
|
|
idx = torch.cat([idx, next_idx], dim=1)
|
|
# c) feed model only the new token
|
|
logits = model(next_idx, use_cache=True)
|
|
else:
|
|
for _ in range(max_new_tokens):
|
|
logits = model(idx[:, -ctx_len:], use_cache=False)
|
|
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
|
|
idx = torch.cat([idx, next_idx], dim=1)
|
|
|
|
return idx
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Run GPT with standard multi-head attention.")
|
|
parser.add_argument("--emb_dim", type=int, default=768, help="Model embedding dimension.")
|
|
parser.add_argument("--n_heads", type=int, default=12, help="Number of attention heads.")
|
|
parser.add_argument("--n_layers", type=int, default=12, help="Number of transformer blocks.")
|
|
parser.add_argument("--max_new_tokens", type=int, default=200, help="Number of tokens to generate.")
|
|
parser.add_argument("--latent_dim", type=int, default=None,
|
|
help="Latent dim for MLA (default: d_out//8)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
start_context = "Hello, I am"
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
encoded = tokenizer.encode(start_context)
|
|
|
|
GPT_CONFIG_124M = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": args.max_new_tokens + len(encoded),
|
|
"emb_dim": args.emb_dim, # Embedding dimension
|
|
"n_heads": args.n_heads, # Number of attention heads
|
|
"n_layers": args.n_layers, # Number of layers
|
|
"drop_rate": 0.0, # Dropout rate
|
|
"qkv_bias": False, # Query-Key-Value bias
|
|
"latent_dim": args.latent_dim,
|
|
}
|
|
torch.manual_seed(123)
|
|
model = GPTModel(GPT_CONFIG_124M)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device, dtype=torch.bfloat16)
|
|
model.eval() # disable dropout
|
|
|
|
encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
|
|
print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
|
|
print("\nInput text:", start_context)
|
|
print("Encoded input text:", encoded)
|
|
print("encoded_tensor.shape:", encoded_tensor.shape)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
start = time.time()
|
|
|
|
token_ids = generate_text_simple_cached(
|
|
model=model,
|
|
idx=encoded_tensor,
|
|
max_new_tokens=args.max_new_tokens,
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
total_time = time.time() - start
|
|
|
|
decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist())
|
|
|
|
print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
|
|
print("\nOutput:", token_ids)
|
|
print("Output length:", len(token_ids[0]))
|
|
print("Output text:", decoded_text)
|
|
|
|
print(f"\nTime: {total_time:.2f} sec")
|
|
print(f"{int(len(token_ids[0])/total_time)} tokens/sec")
|
|
if torch.cuda.is_available():
|
|
max_mem_bytes = torch.cuda.max_memory_allocated()
|
|
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
|
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|