Sebastian Raschka c21bfe4a23
Add PyPI package (#576)
* Add PyPI package

* fixes

* fixes
2025-03-23 19:28:49 -05:00

71 lines
1.8 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from llms_from_scratch.appendix_a import NeuralNetwork, ToyDataset
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
def test_dataset():
X_train = torch.tensor([
[-1.2, 3.1],
[-0.9, 2.9],
[-0.5, 2.6],
[2.3, -1.1],
[2.7, -1.5]
])
y_train = torch.tensor([0, 0, 0, 1, 1])
train_ds = ToyDataset(X_train, y_train)
len(train_ds) == 5
torch.manual_seed(123)
train_loader = DataLoader(
dataset=train_ds,
batch_size=2,
shuffle=True,
num_workers=0
)
torch.manual_seed(123)
model = NeuralNetwork(num_inputs=2, num_outputs=2)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
num_epochs = 3
for epoch in range(num_epochs):
model.train()
for batch_idx, (features, labels) in enumerate(train_loader):
logits = model(features)
loss = F.cross_entropy(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch: {epoch+1:03d}/{num_epochs:03d}"
f" | Batch {batch_idx:03d}/{len(train_loader):03d}"
f" | Train/Val Loss: {loss:.2f}")
model.eval()
with torch.no_grad():
outputs = model(X_train)
expected = torch.tensor([
[2.8569, -4.1618],
[2.5382, -3.7548],
[2.0944, -3.1820],
[-1.4814, 1.4816],
[-1.7176, 1.7342]
])
torch.equal(outputs, expected)