mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			280 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| #
 | |
| # This file collects all the relevant code that we covered thus far
 | |
| # throughout Chapters 2-4.
 | |
| # This file can be run as a standalone script.
 | |
| 
 | |
| import tiktoken
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| 
 | |
| #####################################
 | |
| # Chapter 2
 | |
| #####################################
 | |
| 
 | |
| 
 | |
| class GPTDatasetV1(Dataset):
 | |
|     def __init__(self, txt, tokenizer, max_length, stride):
 | |
|         self.input_ids = []
 | |
|         self.target_ids = []
 | |
| 
 | |
|         # Tokenize the entire text
 | |
|         token_ids = tokenizer.encode(txt)
 | |
| 
 | |
|         # Use a sliding window to chunk the book into overlapping sequences of max_length
 | |
|         for i in range(0, len(token_ids) - max_length, stride):
 | |
|             input_chunk = token_ids[i:i + max_length]
 | |
|             target_chunk = token_ids[i + 1: i + max_length + 1]
 | |
|             self.input_ids.append(torch.tensor(input_chunk))
 | |
|             self.target_ids.append(torch.tensor(target_chunk))
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.input_ids)
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         return self.input_ids[idx], self.target_ids[idx]
 | |
| 
 | |
| 
 | |
| def create_dataloader_v1(txt, batch_size=4, max_length=256,
 | |
|                          stride=128, shuffle=True, drop_last=True, num_workers=0):
 | |
|     # Initialize the tokenizer
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
| 
 | |
|     # Create dataset
 | |
|     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
 | |
| 
 | |
|     # Create dataloader
 | |
|     dataloader = DataLoader(
 | |
|         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
 | |
| 
 | |
|     return dataloader
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 3
 | |
| #####################################
 | |
| class MultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
 | |
| 
 | |
|         self.d_out = d_out
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | |
| 
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape
 | |
| 
 | |
|         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         # We implicitly split the matrix by adding a `num_heads` dimension
 | |
|         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | |
|         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | |
|         keys = keys.transpose(1, 2)
 | |
|         queries = queries.transpose(1, 2)
 | |
|         values = values.transpose(1, 2)
 | |
| 
 | |
|         # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | |
|         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | |
| 
 | |
|         # Original mask truncated to the number of tokens and converted to boolean
 | |
|         mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | |
| 
 | |
|         # Use the mask to fill attention scores
 | |
|         attn_scores.masked_fill_(mask_bool, -torch.inf)
 | |
| 
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
|         attn_weights = self.dropout(attn_weights)
 | |
| 
 | |
|         # Shape: (b, num_tokens, num_heads, head_dim)
 | |
|         context_vec = (attn_weights @ values).transpose(1, 2)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.reshape(b, num_tokens, self.d_out)
 | |
|         context_vec = self.out_proj(context_vec)  # optional projection
 | |
| 
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 4
 | |
| #####################################
 | |
| class LayerNorm(nn.Module):
 | |
|     def __init__(self, emb_dim):
 | |
|         super().__init__()
 | |
|         self.eps = 1e-5
 | |
|         self.scale = nn.Parameter(torch.ones(emb_dim))
 | |
|         self.shift = nn.Parameter(torch.zeros(emb_dim))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         mean = x.mean(dim=-1, keepdim=True)
 | |
|         var = x.var(dim=-1, keepdim=True, unbiased=False)
 | |
|         norm_x = (x - mean) / torch.sqrt(var + self.eps)
 | |
|         return self.scale * norm_x + self.shift
 | |
| 
 | |
| 
 | |
| class GELU(nn.Module):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return 0.5 * x * (1 + torch.tanh(
 | |
|             torch.sqrt(torch.tensor(2.0 / torch.pi)) *
 | |
|             (x + 0.044715 * torch.pow(x, 3))
 | |
|         ))
 | |
| 
 | |
| 
 | |
| class FeedForward(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.layers = nn.Sequential(
 | |
|             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | |
|             GELU(),
 | |
|             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.layers(x)
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.att = MultiHeadAttention(
 | |
|             d_in=cfg["emb_dim"],
 | |
|             d_out=cfg["emb_dim"],
 | |
|             context_length=cfg["context_length"],
 | |
|             num_heads=cfg["n_heads"],
 | |
|             dropout=cfg["drop_rate"],
 | |
|             qkv_bias=cfg["qkv_bias"])
 | |
|         self.ff = FeedForward(cfg)
 | |
|         self.norm1 = LayerNorm(cfg["emb_dim"])
 | |
|         self.norm2 = LayerNorm(cfg["emb_dim"])
 | |
|         self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # Shortcut connection for attention block
 | |
|         shortcut = x
 | |
|         x = self.norm1(x)
 | |
|         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         # Shortcut connection for feed-forward block
 | |
|         shortcut = x
 | |
|         x = self.norm2(x)
 | |
|         x = self.ff(x)
 | |
|         x = self.drop_shortcut(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GPTModel(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | |
|         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 | |
|         self.drop_emb = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|         self.trf_blocks = nn.Sequential(
 | |
|             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
 | |
| 
 | |
|         self.final_norm = LayerNorm(cfg["emb_dim"])
 | |
|         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | |
| 
 | |
|     def forward(self, in_idx):
 | |
|         batch_size, seq_len = in_idx.shape
 | |
|         tok_embeds = self.tok_emb(in_idx)
 | |
|         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | |
|         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_emb(x)
 | |
|         x = self.trf_blocks(x)
 | |
|         x = self.final_norm(x)
 | |
|         logits = self.out_head(x)
 | |
|         return logits
 | |
| 
 | |
| 
 | |
| def generate_text_simple(model, idx, max_new_tokens, context_size):
 | |
|     # idx is (B, T) array of indices in the current context
 | |
|     for _ in range(max_new_tokens):
 | |
| 
 | |
|         # Crop current context if it exceeds the supported context size
 | |
|         # E.g., if LLM supports only 5 tokens, and the context size is 10
 | |
|         # then only the last 5 tokens are used as context
 | |
|         idx_cond = idx[:, -context_size:]
 | |
| 
 | |
|         # Get the predictions
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
| 
 | |
|         # Focus only on the last time step
 | |
|         # (batch, n_token, vocab_size) becomes (batch, vocab_size)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # Get the idx of the vocab entry with the highest logits value
 | |
|         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)
 | |
| 
 | |
|         # Append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)
 | |
| 
 | |
|     return idx
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     GPT_CONFIG_124M = {
 | |
|         "vocab_size": 50257,     # Vocabulary size
 | |
|         "context_length": 1024,  # Context length
 | |
|         "emb_dim": 768,          # Embedding dimension
 | |
|         "n_heads": 12,           # Number of attention heads
 | |
|         "n_layers": 12,          # Number of layers
 | |
|         "drop_rate": 0.1,        # Dropout rate
 | |
|         "qkv_bias": False        # Query-Key-Value bias
 | |
|     }
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
|     model = GPTModel(GPT_CONFIG_124M)
 | |
|     model.eval()  # disable dropout
 | |
| 
 | |
|     start_context = "Hello, I am"
 | |
| 
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
|     encoded = tokenizer.encode(start_context)
 | |
|     encoded_tensor = torch.tensor(encoded).unsqueeze(0)
 | |
| 
 | |
|     print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
 | |
|     print("\nInput text:", start_context)
 | |
|     print("Encoded input text:", encoded)
 | |
|     print("encoded_tensor.shape:", encoded_tensor.shape)
 | |
| 
 | |
|     out = generate_text_simple(
 | |
|         model=model,
 | |
|         idx=encoded_tensor,
 | |
|         max_new_tokens=10,
 | |
|         context_size=GPT_CONFIG_124M["context_length"]
 | |
|     )
 | |
|     decoded_text = tokenizer.decode(out.squeeze(0).tolist())
 | |
| 
 | |
|     print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
 | |
|     print("\nOutput:", out)
 | |
|     print("Output length:", len(out[0]))
 | |
|     print("Output text:", decoded_text)
 | 
