mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			441 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			441 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| # This is a summary file containing the main takeaways from chapter 6.
 | |
| 
 | |
| import urllib.request
 | |
| import zipfile
 | |
| import os
 | |
| from pathlib import Path
 | |
| import time
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| import pandas as pd
 | |
| import tiktoken
 | |
| import torch
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| 
 | |
| from gpt_download import download_and_load_gpt2
 | |
| from previous_chapters import GPTModel, load_weights_into_gpt
 | |
| 
 | |
| 
 | |
| def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path, test_mode=False):
 | |
|     if data_file_path.exists():
 | |
|         print(f"{data_file_path} already exists. Skipping download and extraction.")
 | |
|         return
 | |
| 
 | |
|     if test_mode:  # Try multiple times since CI sometimes has connectivity issues
 | |
|         max_retries = 5
 | |
|         delay = 5  # delay between retries in seconds
 | |
|         for attempt in range(max_retries):
 | |
|             try:
 | |
|                 # Downloading the file
 | |
|                 with urllib.request.urlopen(url, timeout=10) as response:
 | |
|                     with open(zip_path, "wb") as out_file:
 | |
|                         out_file.write(response.read())
 | |
|                 break  # if download is successful, break out of the loop
 | |
|             except urllib.error.URLError as e:
 | |
|                 print(f"Attempt {attempt + 1} failed: {e}")
 | |
|                 if attempt < max_retries - 1:
 | |
|                     time.sleep(delay)  # wait before retrying
 | |
|                 else:
 | |
|                     print("Failed to download file after several attempts.")
 | |
|                     return  # exit if all retries fail
 | |
| 
 | |
|     else:  # Code as it appears in the chapter
 | |
|         # Downloading the file
 | |
|         with urllib.request.urlopen(url) as response:
 | |
|             with open(zip_path, "wb") as out_file:
 | |
|                 out_file.write(response.read())
 | |
| 
 | |
|     # Unzipping the file
 | |
|     with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | |
|         zip_ref.extractall(extracted_path)
 | |
| 
 | |
|     # Add .tsv file extension
 | |
|     original_file_path = Path(extracted_path) / "SMSSpamCollection"
 | |
|     os.rename(original_file_path, data_file_path)
 | |
|     print(f"File downloaded and saved as {data_file_path}")
 | |
| 
 | |
| 
 | |
| def create_balanced_dataset(df):
 | |
|     # Count the instances of "spam"
 | |
|     num_spam = df[df["Label"] == "spam"].shape[0]
 | |
| 
 | |
|     # Randomly sample "ham" instances to match the number of "spam" instances
 | |
|     ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123)
 | |
| 
 | |
|     # Combine ham "subset" with "spam"
 | |
|     balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]])
 | |
| 
 | |
|     return balanced_df
 | |
| 
 | |
| 
 | |
| def random_split(df, train_frac, validation_frac):
 | |
|     # Shuffle the entire DataFrame
 | |
|     df = df.sample(frac=1, random_state=123).reset_index(drop=True)
 | |
| 
 | |
|     # Calculate split indices
 | |
|     train_end = int(len(df) * train_frac)
 | |
|     validation_end = train_end + int(len(df) * validation_frac)
 | |
| 
 | |
|     # Split the DataFrame
 | |
|     train_df = df[:train_end]
 | |
|     validation_df = df[train_end:validation_end]
 | |
|     test_df = df[validation_end:]
 | |
| 
 | |
|     return train_df, validation_df, test_df
 | |
| 
 | |
| 
 | |
| class SpamDataset(Dataset):
 | |
|     def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
 | |
|         self.data = pd.read_csv(csv_file)
 | |
| 
 | |
|         # Pre-tokenize texts
 | |
|         self.encoded_texts = [
 | |
|             tokenizer.encode(text) for text in self.data["Text"]
 | |
|         ]
 | |
| 
 | |
|         if max_length is None:
 | |
|             self.max_length = self._longest_encoded_length()
 | |
|         else:
 | |
|             self.max_length = max_length
 | |
|             # Truncate sequences if they are longer than max_length
 | |
|             self.encoded_texts = [
 | |
|                 encoded_text[:self.max_length]
 | |
|                 for encoded_text in self.encoded_texts
 | |
|             ]
 | |
| 
 | |
|         # Pad sequences to the longest sequence
 | |
|         self.encoded_texts = [
 | |
|             encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
 | |
|             for encoded_text in self.encoded_texts
 | |
|         ]
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         encoded = self.encoded_texts[index]
 | |
|         label = self.data.iloc[index]["Label"]
 | |
|         return (
 | |
|             torch.tensor(encoded, dtype=torch.long),
 | |
|             torch.tensor(label, dtype=torch.long)
 | |
|         )
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.data)
 | |
| 
 | |
|     def _longest_encoded_length(self):
 | |
|         max_length = 0
 | |
|         for encoded_text in self.encoded_texts:
 | |
|             encoded_length = len(encoded_text)
 | |
|             if encoded_length > max_length:
 | |
|                 max_length = encoded_length
 | |
|         return max_length
 | |
| 
 | |
| 
 | |
| def calc_accuracy_loader(data_loader, model, device, num_batches=None):
 | |
|     model.eval()
 | |
|     correct_predictions, num_examples = 0, 0
 | |
| 
 | |
|     if num_batches is None:
 | |
|         num_batches = len(data_loader)
 | |
|     else:
 | |
|         num_batches = min(num_batches, len(data_loader))
 | |
|     for i, (input_batch, target_batch) in enumerate(data_loader):
 | |
|         if i < num_batches:
 | |
|             input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | |
| 
 | |
|             with torch.no_grad():
 | |
|                 logits = model(input_batch)[:, -1, :]  # Logits of last output token
 | |
|             predicted_labels = torch.argmax(logits, dim=-1)
 | |
| 
 | |
|             num_examples += predicted_labels.shape[0]
 | |
|             correct_predictions += (predicted_labels == target_batch).sum().item()
 | |
|         else:
 | |
|             break
 | |
|     return correct_predictions / num_examples
 | |
| 
 | |
| 
 | |
| def calc_loss_batch(input_batch, target_batch, model, device):
 | |
|     input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | |
|     logits = model(input_batch)[:, -1, :]  # Logits of last output token
 | |
|     loss = torch.nn.functional.cross_entropy(logits, target_batch)
 | |
|     return loss
 | |
| 
 | |
| 
 | |
| def calc_loss_loader(data_loader, model, device, num_batches=None):
 | |
|     total_loss = 0.
 | |
|     if len(data_loader) == 0:
 | |
|         return float("nan")
 | |
|     elif num_batches is None:
 | |
|         num_batches = len(data_loader)
 | |
|     else:
 | |
|         num_batches = min(num_batches, len(data_loader))
 | |
|     for i, (input_batch, target_batch) in enumerate(data_loader):
 | |
|         if i < num_batches:
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             total_loss += loss.item()
 | |
|         else:
 | |
|             break
 | |
|     return total_loss / num_batches
 | |
| 
 | |
| 
 | |
| def evaluate_model(model, train_loader, val_loader, device, eval_iter):
 | |
|     model.eval()
 | |
|     with torch.no_grad():
 | |
|         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
 | |
|         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
 | |
|     model.train()
 | |
|     return train_loss, val_loss
 | |
| 
 | |
| 
 | |
| def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | |
|                             eval_freq, eval_iter, tokenizer):
 | |
|     # Initialize lists to track losses and tokens seen
 | |
|     train_losses, val_losses, train_accs, val_accs = [], [], [], []
 | |
|     examples_seen, global_step = 0, -1
 | |
| 
 | |
|     # Main training loop
 | |
|     for epoch in range(num_epochs):
 | |
|         model.train()  # Set model to training mode
 | |
| 
 | |
|         for input_batch, target_batch in train_loader:
 | |
|             optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             loss.backward()  # Calculate loss gradients
 | |
|             optimizer.step()  # Update model weights using loss gradients
 | |
|             examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
 | |
|             global_step += 1
 | |
| 
 | |
|             # Optional evaluation step
 | |
|             if global_step % eval_freq == 0:
 | |
|                 train_loss, val_loss = evaluate_model(
 | |
|                     model, train_loader, val_loader, device, eval_iter)
 | |
|                 train_losses.append(train_loss)
 | |
|                 val_losses.append(val_loss)
 | |
|                 print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | |
|                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | |
| 
 | |
|         # Calculate accuracy after each epoch
 | |
|         train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
 | |
|         val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
 | |
|         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
 | |
|         print(f"Validation accuracy: {val_accuracy*100:.2f}%")
 | |
|         train_accs.append(train_accuracy)
 | |
|         val_accs.append(val_accuracy)
 | |
| 
 | |
|     return train_losses, val_losses, train_accs, val_accs, examples_seen
 | |
| 
 | |
| 
 | |
| def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"):
 | |
|     fig, ax1 = plt.subplots(figsize=(5, 3))
 | |
| 
 | |
|     # Plot training and validation loss against epochs
 | |
|     ax1.plot(epochs_seen, train_values, label=f"Training {label}")
 | |
|     ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}")
 | |
|     ax1.set_xlabel("Epochs")
 | |
|     ax1.set_ylabel(label.capitalize())
 | |
|     ax1.legend()
 | |
| 
 | |
|     # Create a second x-axis for tokens seen
 | |
|     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
 | |
|     ax2.plot(examples_seen, train_values, alpha=0)  # Invisible plot for aligning ticks
 | |
|     ax2.set_xlabel("Examples seen")
 | |
| 
 | |
|     fig.tight_layout()  # Adjust layout to make room
 | |
|     plt.savefig(f"{label}-plot.pdf")
 | |
|     # plt.show()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     import argparse
 | |
| 
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="Finetune a GPT model for classification"
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--test_mode",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help=("This flag runs the model in test mode for internal testing purposes. "
 | |
|               "Otherwise, it runs the model as it is used in the chapter (recommended).")
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     ########################################
 | |
|     # Download and prepare dataset
 | |
|     ########################################
 | |
| 
 | |
|     url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
 | |
|     zip_path = "sms_spam_collection.zip"
 | |
|     extracted_path = "sms_spam_collection"
 | |
|     data_file_path = Path(extracted_path) / "SMSSpamCollection.tsv"
 | |
| 
 | |
|     download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path, test_mode=args.test_mode)
 | |
|     df = pd.read_csv(data_file_path, sep="\t", header=None, names=["Label", "Text"])
 | |
|     balanced_df = create_balanced_dataset(df)
 | |
|     balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
 | |
| 
 | |
|     train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
 | |
|     train_df.to_csv("train.csv", index=None)
 | |
|     validation_df.to_csv("validation.csv", index=None)
 | |
|     test_df.to_csv("test.csv", index=None)
 | |
| 
 | |
|     ########################################
 | |
|     # Create data loaders
 | |
|     ########################################
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
| 
 | |
|     train_dataset = SpamDataset(
 | |
|         csv_file="train.csv",
 | |
|         max_length=None,
 | |
|         tokenizer=tokenizer
 | |
|     )
 | |
| 
 | |
|     val_dataset = SpamDataset(
 | |
|         csv_file="validation.csv",
 | |
|         max_length=train_dataset.max_length,
 | |
|         tokenizer=tokenizer
 | |
|     )
 | |
| 
 | |
|     test_dataset = SpamDataset(
 | |
|         csv_file="test.csv",
 | |
|         max_length=train_dataset.max_length,
 | |
|         tokenizer=tokenizer
 | |
|     )
 | |
| 
 | |
|     num_workers = 0
 | |
|     batch_size = 8
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
| 
 | |
|     train_loader = DataLoader(
 | |
|         dataset=train_dataset,
 | |
|         batch_size=batch_size,
 | |
|         shuffle=True,
 | |
|         num_workers=num_workers,
 | |
|         drop_last=True,
 | |
|     )
 | |
| 
 | |
|     val_loader = DataLoader(
 | |
|         dataset=val_dataset,
 | |
|         batch_size=batch_size,
 | |
|         num_workers=num_workers,
 | |
|         drop_last=False,
 | |
|     )
 | |
| 
 | |
|     test_loader = DataLoader(
 | |
|         dataset=test_dataset,
 | |
|         batch_size=batch_size,
 | |
|         num_workers=num_workers,
 | |
|         drop_last=False,
 | |
|     )
 | |
| 
 | |
|     ########################################
 | |
|     # Load pretrained model
 | |
|     ########################################
 | |
| 
 | |
|     # Small GPT model for testing purposes
 | |
|     if args.test_mode:
 | |
|         BASE_CONFIG = {
 | |
|             "vocab_size": 50257,
 | |
|             "context_length": 120,
 | |
|             "drop_rate": 0.0,
 | |
|             "qkv_bias": False,
 | |
|             "emb_dim": 12,
 | |
|             "n_layers": 1,
 | |
|             "n_heads": 2
 | |
|         }
 | |
|         model = GPTModel(BASE_CONFIG)
 | |
|         model.eval()
 | |
|         device = "cpu"
 | |
| 
 | |
|     # Code as it is used in the main chapter
 | |
|     else:
 | |
|         CHOOSE_MODEL = "gpt2-small (124M)"
 | |
|         INPUT_PROMPT = "Every effort moves"
 | |
| 
 | |
|         BASE_CONFIG = {
 | |
|             "vocab_size": 50257,     # Vocabulary size
 | |
|             "context_length": 1024,  # Context length
 | |
|             "drop_rate": 0.0,        # Dropout rate
 | |
|             "qkv_bias": True         # Query-key-value bias
 | |
|         }
 | |
| 
 | |
|         model_configs = {
 | |
|             "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
 | |
|             "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
 | |
|             "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
 | |
|             "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
 | |
|         }
 | |
| 
 | |
|         BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
 | |
| 
 | |
|         assert train_dataset.max_length <= BASE_CONFIG["context_length"], (
 | |
|             f"Dataset length {train_dataset.max_length} exceeds model's context "
 | |
|             f"length {BASE_CONFIG['context_length']}. Reinitialize data sets with "
 | |
|             f"`max_length={BASE_CONFIG['context_length']}`"
 | |
|         )
 | |
| 
 | |
|         model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
 | |
|         settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
 | |
| 
 | |
|         model = GPTModel(BASE_CONFIG)
 | |
|         load_weights_into_gpt(model, params)
 | |
|         device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | |
| 
 | |
|     ########################################
 | |
|     # Modify and pretrained model
 | |
|     ########################################
 | |
| 
 | |
|     for param in model.parameters():
 | |
|         param.requires_grad = False
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
| 
 | |
|     num_classes = 2
 | |
|     model.out_head = torch.nn.Linear(in_features=BASE_CONFIG["emb_dim"], out_features=num_classes)
 | |
|     model.to(device)
 | |
| 
 | |
|     for param in model.trf_blocks[-1].parameters():
 | |
|         param.requires_grad = True
 | |
| 
 | |
|     for param in model.final_norm.parameters():
 | |
|         param.requires_grad = True
 | |
| 
 | |
|     ########################################
 | |
|     # Finetune modified model
 | |
|     ########################################
 | |
| 
 | |
|     start_time = time.time()
 | |
|     torch.manual_seed(123)
 | |
| 
 | |
|     optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
 | |
| 
 | |
|     num_epochs = 5
 | |
|     train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
 | |
|         model, train_loader, val_loader, optimizer, device,
 | |
|         num_epochs=num_epochs, eval_freq=50, eval_iter=5,
 | |
|         tokenizer=tokenizer
 | |
|     )
 | |
| 
 | |
|     end_time = time.time()
 | |
|     execution_time_minutes = (end_time - start_time) / 60
 | |
|     print(f"Training completed in {execution_time_minutes:.2f} minutes.")
 | |
| 
 | |
|     ########################################
 | |
|     # Plot results
 | |
|     ########################################
 | |
| 
 | |
|     # loss plot
 | |
|     epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
 | |
|     examples_seen_tensor = torch.linspace(0, examples_seen, len(train_losses))
 | |
|     plot_values(epochs_tensor, examples_seen_tensor, train_losses, val_losses)
 | |
| 
 | |
|     # accuracy plot
 | |
|     epochs_tensor = torch.linspace(0, num_epochs, len(train_accs))
 | |
|     examples_seen_tensor = torch.linspace(0, examples_seen, len(train_accs))
 | |
|     plot_values(epochs_tensor, examples_seen_tensor, train_accs, val_accs, label="accuracy")
 | 
