mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 03:40:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			243 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | 
						|
# Source for "Build a Large Language Model From Scratch"
 | 
						|
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | 
						|
# Code: https://github.com/rasbt/LLMs-from-scratch
 | 
						|
 | 
						|
import matplotlib.pyplot as plt
 | 
						|
import os
 | 
						|
import torch
 | 
						|
import urllib.request
 | 
						|
import tiktoken
 | 
						|
 | 
						|
 | 
						|
# Import from local files
 | 
						|
from previous_chapters import GPTModel, create_dataloader_v1, generate_text_simple
 | 
						|
 | 
						|
 | 
						|
def text_to_token_ids(text, tokenizer):
 | 
						|
    encoded = tokenizer.encode(text)
 | 
						|
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
 | 
						|
    return encoded_tensor
 | 
						|
 | 
						|
 | 
						|
def token_ids_to_text(token_ids, tokenizer):
 | 
						|
    flat = token_ids.squeeze(0)  # remove batch dimension
 | 
						|
    return tokenizer.decode(flat.tolist())
 | 
						|
 | 
						|
 | 
						|
def calc_loss_batch(input_batch, target_batch, model, device):
 | 
						|
    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | 
						|
    logits = model(input_batch)
 | 
						|
    loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
 | 
						|
    return loss
 | 
						|
 | 
						|
 | 
						|
def calc_loss_loader(data_loader, model, device, num_batches=None):
 | 
						|
    total_loss = 0.
 | 
						|
    if len(data_loader) == 0:
 | 
						|
        return float("nan")
 | 
						|
    elif num_batches is None:
 | 
						|
        num_batches = len(data_loader)
 | 
						|
    else:
 | 
						|
        num_batches = min(num_batches, len(data_loader))
 | 
						|
    for i, (input_batch, target_batch) in enumerate(data_loader):
 | 
						|
        if i < num_batches:
 | 
						|
            loss = calc_loss_batch(input_batch, target_batch, model, device)
 | 
						|
            total_loss += loss.item()
 | 
						|
        else:
 | 
						|
            break
 | 
						|
    return total_loss / num_batches
 | 
						|
 | 
						|
 | 
						|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
 | 
						|
    model.eval()
 | 
						|
    with torch.no_grad():
 | 
						|
        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
 | 
						|
        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
 | 
						|
    model.train()
 | 
						|
    return train_loss, val_loss
 | 
						|
 | 
						|
 | 
						|
def generate_and_print_sample(model, tokenizer, device, start_context):
 | 
						|
    model.eval()
 | 
						|
    context_size = model.pos_emb.weight.shape[0]
 | 
						|
    encoded = text_to_token_ids(start_context, tokenizer).to(device)
 | 
						|
    with torch.no_grad():
 | 
						|
        token_ids = generate_text_simple(
 | 
						|
            model=model, idx=encoded,
 | 
						|
            max_new_tokens=50, context_size=context_size
 | 
						|
        )
 | 
						|
        decoded_text = token_ids_to_text(token_ids, tokenizer)
 | 
						|
        print(decoded_text.replace("\n", " "))  # Compact print format
 | 
						|
    model.train()
 | 
						|
 | 
						|
 | 
						|
def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | 
						|
                       eval_freq, eval_iter, start_context, tokenizer):
 | 
						|
    # Initialize lists to track losses and tokens seen
 | 
						|
    train_losses, val_losses, track_tokens_seen = [], [], []
 | 
						|
    tokens_seen = 0
 | 
						|
    global_step = -1
 | 
						|
 | 
						|
    # Main training loop
 | 
						|
    for epoch in range(num_epochs):
 | 
						|
        model.train()  # Set model to training mode
 | 
						|
 | 
						|
        for input_batch, target_batch in train_loader:
 | 
						|
            optimizer.zero_grad()  # Reset loss gradients from previous epoch
 | 
						|
            loss = calc_loss_batch(input_batch, target_batch, model, device)
 | 
						|
            loss.backward()  # Calculate loss gradients
 | 
						|
            optimizer.step()  # Update model weights using loss gradients
 | 
						|
            tokens_seen += input_batch.numel()
 | 
						|
            global_step += 1
 | 
						|
 | 
						|
            # Optional evaluation step
 | 
						|
            if global_step % eval_freq == 0:
 | 
						|
                train_loss, val_loss = evaluate_model(
 | 
						|
                    model, train_loader, val_loader, device, eval_iter)
 | 
						|
                train_losses.append(train_loss)
 | 
						|
                val_losses.append(val_loss)
 | 
						|
                track_tokens_seen.append(tokens_seen)
 | 
						|
                print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | 
						|
                      f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | 
						|
 | 
						|
        # Print a sample text after each epoch
 | 
						|
        generate_and_print_sample(
 | 
						|
            model, tokenizer, device, start_context
 | 
						|
        )
 | 
						|
 | 
						|
    return train_losses, val_losses, track_tokens_seen
 | 
						|
 | 
						|
 | 
						|
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
 | 
						|
    fig, ax1 = plt.subplots()
 | 
						|
 | 
						|
    # Plot training and validation loss against epochs
 | 
						|
    ax1.plot(epochs_seen, train_losses, label="Training loss")
 | 
						|
    ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
 | 
						|
    ax1.set_xlabel("Epochs")
 | 
						|
    ax1.set_ylabel("Loss")
 | 
						|
    ax1.legend(loc="upper right")
 | 
						|
 | 
						|
    # Create a second x-axis for tokens seen
 | 
						|
    ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
 | 
						|
    ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks
 | 
						|
    ax2.set_xlabel("Tokens seen")
 | 
						|
 | 
						|
    fig.tight_layout()  # Adjust layout to make room
 | 
						|
    # plt.show()
 | 
						|
 | 
						|
 | 
						|
def main(gpt_config, settings):
 | 
						|
 | 
						|
    torch.manual_seed(123)
 | 
						|
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
						|
 | 
						|
    ##############################
 | 
						|
    # Download data if necessary
 | 
						|
    ##############################
 | 
						|
 | 
						|
    file_path = "the-verdict.txt"
 | 
						|
    url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch02/01_main-chapter-code/the-verdict.txt"
 | 
						|
 | 
						|
    if not os.path.exists(file_path):
 | 
						|
        with urllib.request.urlopen(url) as response:
 | 
						|
            text_data = response.read().decode('utf-8')
 | 
						|
        with open(file_path, "w", encoding="utf-8") as file:
 | 
						|
            file.write(text_data)
 | 
						|
    else:
 | 
						|
        with open(file_path, "r", encoding="utf-8") as file:
 | 
						|
            text_data = file.read()
 | 
						|
 | 
						|
    ##############################
 | 
						|
    # Initialize model
 | 
						|
    ##############################
 | 
						|
 | 
						|
    model = GPTModel(gpt_config)
 | 
						|
    model.to(device)  # no assignment model = model.to(device) necessary for nn.Module classes
 | 
						|
    optimizer = torch.optim.AdamW(
 | 
						|
        model.parameters(), lr=settings["learning_rate"], weight_decay=settings["weight_decay"]
 | 
						|
    )
 | 
						|
 | 
						|
    ##############################
 | 
						|
    # Set up dataloaders
 | 
						|
    ##############################
 | 
						|
 | 
						|
    # Train/validation ratio
 | 
						|
    train_ratio = 0.90
 | 
						|
    split_idx = int(train_ratio * len(text_data))
 | 
						|
 | 
						|
    train_loader = create_dataloader_v1(
 | 
						|
        text_data[:split_idx],
 | 
						|
        batch_size=settings["batch_size"],
 | 
						|
        max_length=gpt_config["context_length"],
 | 
						|
        stride=gpt_config["context_length"],
 | 
						|
        drop_last=True,
 | 
						|
        shuffle=True,
 | 
						|
        num_workers=0
 | 
						|
    )
 | 
						|
 | 
						|
    val_loader = create_dataloader_v1(
 | 
						|
        text_data[split_idx:],
 | 
						|
        batch_size=settings["batch_size"],
 | 
						|
        max_length=gpt_config["context_length"],
 | 
						|
        stride=gpt_config["context_length"],
 | 
						|
        drop_last=False,
 | 
						|
        shuffle=False,
 | 
						|
        num_workers=0
 | 
						|
    )
 | 
						|
 | 
						|
    ##############################
 | 
						|
    # Train model
 | 
						|
    ##############################
 | 
						|
 | 
						|
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
						|
 | 
						|
    train_losses, val_losses, tokens_seen = train_model_simple(
 | 
						|
        model, train_loader, val_loader, optimizer, device,
 | 
						|
        num_epochs=settings["num_epochs"], eval_freq=5, eval_iter=1,
 | 
						|
        start_context="Every effort moves you", tokenizer=tokenizer
 | 
						|
    )
 | 
						|
 | 
						|
    return train_losses, val_losses, tokens_seen, model
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    GPT_CONFIG_124M = {
 | 
						|
        "vocab_size": 50257,    # Vocabulary size
 | 
						|
        "context_length": 256,  # Shortened context length (orig: 1024)
 | 
						|
        "emb_dim": 768,         # Embedding dimension
 | 
						|
        "n_heads": 12,          # Number of attention heads
 | 
						|
        "n_layers": 12,         # Number of layers
 | 
						|
        "drop_rate": 0.1,       # Dropout rate
 | 
						|
        "qkv_bias": False       # Query-key-value bias
 | 
						|
    }
 | 
						|
 | 
						|
    OTHER_SETTINGS = {
 | 
						|
        "learning_rate": 5e-4,
 | 
						|
        "num_epochs": 10,
 | 
						|
        "batch_size": 2,
 | 
						|
        "weight_decay": 0.1
 | 
						|
    }
 | 
						|
 | 
						|
    ###########################
 | 
						|
    # Initiate training
 | 
						|
    ###########################
 | 
						|
 | 
						|
    train_losses, val_losses, tokens_seen, model = main(GPT_CONFIG_124M, OTHER_SETTINGS)
 | 
						|
 | 
						|
    ###########################
 | 
						|
    # After training
 | 
						|
    ###########################
 | 
						|
 | 
						|
    # Plot results
 | 
						|
    epochs_tensor = torch.linspace(0, OTHER_SETTINGS["num_epochs"], len(train_losses))
 | 
						|
    plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)
 | 
						|
    plt.savefig("loss.pdf")
 | 
						|
 | 
						|
    # Save and load model
 | 
						|
    torch.save(model.state_dict(), "model.pth")
 | 
						|
    model = GPTModel(GPT_CONFIG_124M)
 | 
						|
    model.load_state_dict(torch.load("model.pth"))
 |