mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-07-03 07:04:25 +00:00
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
# File for internal use (unit tests)
|
|
|
|
import pytest
|
|
from gpt_train import main
|
|
import http.client
|
|
from urllib.parse import urlparse
|
|
|
|
|
|
@pytest.fixture
|
|
def gpt_config():
|
|
return {
|
|
"vocab_size": 50257,
|
|
"context_length": 12, # small for testing efficiency
|
|
"emb_dim": 32, # small for testing efficiency
|
|
"n_heads": 4, # small for testing efficiency
|
|
"n_layers": 2, # small for testing efficiency
|
|
"drop_rate": 0.1,
|
|
"qkv_bias": False
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def other_settings():
|
|
return {
|
|
"learning_rate": 5e-4,
|
|
"num_epochs": 1, # small for testing efficiency
|
|
"batch_size": 2,
|
|
"weight_decay": 0.1
|
|
}
|
|
|
|
|
|
def test_main(gpt_config, other_settings):
|
|
train_losses, val_losses, tokens_seen, model = main(gpt_config, other_settings)
|
|
|
|
assert len(train_losses) == 39, "Unexpected number of training losses"
|
|
assert len(val_losses) == 39, "Unexpected number of validation losses"
|
|
assert len(tokens_seen) == 39, "Unexpected number of tokens seen"
|
|
|
|
|
|
def check_file_size(url, expected_size):
|
|
parsed_url = urlparse(url)
|
|
if parsed_url.scheme == "https":
|
|
conn = http.client.HTTPSConnection(parsed_url.netloc)
|
|
else:
|
|
conn = http.client.HTTPConnection(parsed_url.netloc)
|
|
|
|
conn.request("HEAD", parsed_url.path)
|
|
response = conn.getresponse()
|
|
if response.status != 200:
|
|
return False, f"{url} not accessible"
|
|
size = response.getheader("Content-Length")
|
|
if size is None:
|
|
return False, "Content-Length header is missing"
|
|
size = int(size)
|
|
if size != expected_size:
|
|
return False, f"{url} file has expected size {expected_size}, but got {size}"
|
|
return True, f"{url} file size is correct"
|
|
|
|
|
|
def test_model_files():
|
|
def check_model_files(base_url):
|
|
|
|
model_size = "124M"
|
|
files = {
|
|
"checkpoint": 77,
|
|
"encoder.json": 1042301,
|
|
"hparams.json": 90,
|
|
"model.ckpt.data-00000-of-00001": 497759232,
|
|
"model.ckpt.index": 5215,
|
|
"model.ckpt.meta": 471155,
|
|
"vocab.bpe": 456318
|
|
}
|
|
|
|
for file_name, expected_size in files.items():
|
|
url = f"{base_url}/{model_size}/{file_name}"
|
|
valid, message = check_file_size(url, expected_size)
|
|
assert valid, message
|
|
|
|
model_size = "355M"
|
|
files = {
|
|
"checkpoint": 77,
|
|
"encoder.json": 1042301,
|
|
"hparams.json": 91,
|
|
"model.ckpt.data-00000-of-00001": 1419292672,
|
|
"model.ckpt.index": 10399,
|
|
"model.ckpt.meta": 926519,
|
|
"vocab.bpe": 456318
|
|
}
|
|
|
|
for file_name, expected_size in files.items():
|
|
url = f"{base_url}/{model_size}/{file_name}"
|
|
valid, message = check_file_size(url, expected_size)
|
|
assert valid, message
|
|
|
|
check_model_files(base_url="https://openaipublic.blob.core.windows.net/gpt-2/models")
|
|
check_model_files(base_url="https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2")
|