mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 01:41:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			352 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| #
 | |
| # A minimal instruction finetuning file based on the code in chapter 7
 | |
| 
 | |
| from functools import partial
 | |
| from importlib.metadata import version
 | |
| import json
 | |
| import os
 | |
| import re
 | |
| import time
 | |
| import urllib
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| import tiktoken
 | |
| import torch
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| from tqdm import tqdm
 | |
| 
 | |
| # Import from local files in this folder
 | |
| from gpt_download import download_and_load_gpt2
 | |
| from previous_chapters import (
 | |
|     calc_loss_loader,
 | |
|     generate,
 | |
|     GPTModel,
 | |
|     load_weights_into_gpt,
 | |
|     text_to_token_ids,
 | |
|     train_model_simple,
 | |
|     token_ids_to_text
 | |
| )
 | |
| 
 | |
| 
 | |
| class InstructionDataset(Dataset):
 | |
|     def __init__(self, data, tokenizer):
 | |
|         self.data = data
 | |
| 
 | |
|         # Pre-tokenize texts
 | |
|         self.encoded_texts = []
 | |
|         for entry in data:
 | |
|             instruction_plus_input = format_input(entry)
 | |
|             response_text = f"\n\n### Response:\n{entry['output']}"
 | |
|             full_text = instruction_plus_input + response_text
 | |
|             self.encoded_texts.append(
 | |
|                 tokenizer.encode(full_text)
 | |
|             )
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         return self.encoded_texts[index]
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.data)
 | |
| 
 | |
| 
 | |
| def custom_collate_fn(
 | |
|     batch,
 | |
|     pad_token_id=50256,
 | |
|     ignore_index=-100,
 | |
|     allowed_max_length=None,
 | |
|     device="cpu"
 | |
| ):
 | |
|     # Find the longest sequence in the batch
 | |
|     batch_max_length = max(len(item)+1 for item in batch)
 | |
| 
 | |
|     # Pad and prepare inputs and targets
 | |
|     inputs_lst, targets_lst = [], []
 | |
| 
 | |
|     for item in batch:
 | |
|         new_item = item.copy()
 | |
|         # Add an <|endoftext|> token
 | |
|         new_item += [pad_token_id]
 | |
|         # Pad sequences to max_length
 | |
|         padded = new_item + [pad_token_id] * (batch_max_length - len(new_item))
 | |
|         inputs = torch.tensor(padded[:-1])  # Truncate the last token for inputs
 | |
|         targets = torch.tensor(padded[1:])  # Shift +1 to the right for targets
 | |
| 
 | |
|         # New: Replace all but the first padding tokens in targets by ignore_index
 | |
|         mask = targets == pad_token_id
 | |
|         indices = torch.nonzero(mask).squeeze()
 | |
|         if indices.numel() > 1:
 | |
|             targets[indices[1:]] = ignore_index
 | |
| 
 | |
|         # New: Optionally truncate to maximum sequence length
 | |
|         if allowed_max_length is not None:
 | |
|             inputs = inputs[:allowed_max_length]
 | |
|             targets = targets[:allowed_max_length]
 | |
| 
 | |
|         inputs_lst.append(inputs)
 | |
|         targets_lst.append(targets)
 | |
| 
 | |
|     # Convert list of inputs and targets to tensors and transfer to target device
 | |
|     inputs_tensor = torch.stack(inputs_lst).to(device)
 | |
|     targets_tensor = torch.stack(targets_lst).to(device)
 | |
| 
 | |
|     return inputs_tensor, targets_tensor
 | |
| 
 | |
| 
 | |
| def download_and_load_file(file_path, url):
 | |
| 
 | |
|     if not os.path.exists(file_path):
 | |
|         with urllib.request.urlopen(url) as response:
 | |
|             text_data = response.read().decode("utf-8")
 | |
|         with open(file_path, "w", encoding="utf-8") as file:
 | |
|             file.write(text_data)
 | |
|     else:
 | |
|         with open(file_path, "r", encoding="utf-8") as file:
 | |
|             text_data = file.read()
 | |
| 
 | |
|     with open(file_path, "r") as file:
 | |
|         data = json.load(file)
 | |
| 
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def format_input(entry):
 | |
|     instruction_text = (
 | |
|         f"Below is an instruction that describes a task. "
 | |
|         f"Write a response that appropriately completes the request."
 | |
|         f"\n\n### Instruction:\n{entry['instruction']}"
 | |
|     )
 | |
| 
 | |
|     input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""
 | |
| 
 | |
|     return instruction_text + input_text
 | |
| 
 | |
| 
 | |
| def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
 | |
|     fig, ax1 = plt.subplots(figsize=(12, 6))
 | |
| 
 | |
|     # Plot training and validation loss against epochs
 | |
|     ax1.plot(epochs_seen, train_losses, label="Training loss")
 | |
|     ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
 | |
|     ax1.set_xlabel("Epochs")
 | |
|     ax1.set_ylabel("Loss")
 | |
|     ax1.legend(loc="upper right")
 | |
| 
 | |
|     # Create a second x-axis for tokens seen
 | |
|     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
 | |
|     ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks
 | |
|     ax2.set_xlabel("Tokens seen")
 | |
| 
 | |
|     fig.tight_layout()  # Adjust layout to make room
 | |
|     plot_name = "loss-plot-standalone.pdf"
 | |
|     print(f"Plot saved as {plot_name}")
 | |
|     plt.savefig(plot_name)
 | |
|     # plt.show()
 | |
| 
 | |
| 
 | |
| def main(test_mode=False):
 | |
|     #######################################
 | |
|     # Print package versions
 | |
|     #######################################
 | |
|     print()
 | |
|     pkgs = [
 | |
|         "matplotlib",  # Plotting library
 | |
|         "tiktoken",    # Tokenizer
 | |
|         "torch",       # Deep learning library
 | |
|         "tqdm",        # Progress bar
 | |
|         "tensorflow",  # For OpenAI's pretrained weights
 | |
|     ]
 | |
|     for p in pkgs:
 | |
|         print(f"{p} version: {version(p)}")
 | |
|     print(50*"-")
 | |
| 
 | |
|     #######################################
 | |
|     # Download and prepare dataset
 | |
|     #######################################
 | |
|     file_path = "instruction-data.json"
 | |
|     url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch07/01_main-chapter-code/instruction-data.json"
 | |
|     data = download_and_load_file(file_path, url)
 | |
| 
 | |
|     train_portion = int(len(data) * 0.85)  # 85% for training
 | |
|     test_portion = int(len(data) * 0.1)    # 10% for testing
 | |
| 
 | |
|     train_data = data[:train_portion]
 | |
|     test_data = data[train_portion:train_portion + test_portion]
 | |
|     val_data = data[train_portion + test_portion:]
 | |
| 
 | |
|     # Use very small subset for testing purposes
 | |
|     if args.test_mode:
 | |
|         train_data = train_data[:10]
 | |
|         val_data = val_data[:10]
 | |
|         test_data = test_data[:10]
 | |
| 
 | |
|     print("Training set length:", len(train_data))
 | |
|     print("Validation set length:", len(val_data))
 | |
|     print("Test set length:", len(test_data))
 | |
|     print(50*"-")
 | |
| 
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
|     device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | |
|     print("Device:", device)
 | |
|     print(50*"-")
 | |
| 
 | |
|     customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=1024)
 | |
| 
 | |
|     num_workers = 0
 | |
|     batch_size = 8
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
| 
 | |
|     train_dataset = InstructionDataset(train_data, tokenizer)
 | |
|     train_loader = DataLoader(
 | |
|         train_dataset,
 | |
|         batch_size=batch_size,
 | |
|         collate_fn=customized_collate_fn,
 | |
|         shuffle=True,
 | |
|         drop_last=True,
 | |
|         num_workers=num_workers
 | |
|     )
 | |
| 
 | |
|     val_dataset = InstructionDataset(val_data, tokenizer)
 | |
|     val_loader = DataLoader(
 | |
|         val_dataset,
 | |
|         batch_size=batch_size,
 | |
|         collate_fn=customized_collate_fn,
 | |
|         shuffle=False,
 | |
|         drop_last=False,
 | |
|         num_workers=num_workers
 | |
|     )
 | |
| 
 | |
|     #######################################
 | |
|     # Load pretrained model
 | |
|     #######################################
 | |
| 
 | |
|     # Small GPT model for testing purposes
 | |
|     if args.test_mode:
 | |
|         BASE_CONFIG = {
 | |
|             "vocab_size": 50257,
 | |
|             "context_length": 120,
 | |
|             "drop_rate": 0.0,
 | |
|             "qkv_bias": False,
 | |
|             "emb_dim": 12,
 | |
|             "n_layers": 1,
 | |
|             "n_heads": 2
 | |
|         }
 | |
|         model = GPTModel(BASE_CONFIG)
 | |
|         model.eval()
 | |
|         device = "cpu"
 | |
|         CHOOSE_MODEL = "Small test model"
 | |
| 
 | |
|     # Code as it is used in the main chapter
 | |
|     else:
 | |
|         BASE_CONFIG = {
 | |
|             "vocab_size": 50257,     # Vocabulary size
 | |
|             "context_length": 1024,  # Context length
 | |
|             "drop_rate": 0.0,        # Dropout rate
 | |
|             "qkv_bias": True         # Query-key-value bias
 | |
|         }
 | |
| 
 | |
|         model_configs = {
 | |
|             "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
 | |
|             "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
 | |
|             "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
 | |
|             "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
 | |
|         }
 | |
| 
 | |
|         CHOOSE_MODEL = "gpt2-medium (355M)"
 | |
| 
 | |
|         BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
 | |
| 
 | |
|         model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
 | |
|         settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
 | |
| 
 | |
|         model = GPTModel(BASE_CONFIG)
 | |
|         load_weights_into_gpt(model, params)
 | |
|         model.eval()
 | |
|         model.to(device)
 | |
| 
 | |
|     print("Loaded model:", CHOOSE_MODEL)
 | |
|     print(50*"-")
 | |
| 
 | |
|     #######################################
 | |
|     # Finetuning the model
 | |
|     #######################################
 | |
|     print("Initial losses")
 | |
|     with torch.no_grad():
 | |
|         train_loss = calc_loss_loader(train_loader, model, device, num_batches=5)
 | |
|         val_loss = calc_loss_loader(val_loader, model, device, num_batches=5)
 | |
| 
 | |
|     print("   Training loss:", train_loss)
 | |
|     print("   Validation loss:", val_loss)
 | |
| 
 | |
|     start_time = time.time()
 | |
|     optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
 | |
| 
 | |
|     num_epochs = 2
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
|     train_losses, val_losses, tokens_seen = train_model_simple(
 | |
|         model, train_loader, val_loader, optimizer, device,
 | |
|         num_epochs=num_epochs, eval_freq=5, eval_iter=5,
 | |
|         start_context=format_input(val_data[0]), tokenizer=tokenizer
 | |
|     )
 | |
| 
 | |
|     end_time = time.time()
 | |
|     execution_time_minutes = (end_time - start_time) / 60
 | |
|     print(f"Training completed in {execution_time_minutes:.2f} minutes.")
 | |
| 
 | |
|     epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
 | |
|     plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)
 | |
|     print(50*"-")
 | |
| 
 | |
|     #######################################
 | |
|     # Saving results
 | |
|     #######################################
 | |
|     print("Generating responses")
 | |
|     for i, entry in tqdm(enumerate(test_data), total=len(test_data)):
 | |
| 
 | |
|         input_text = format_input(entry)
 | |
| 
 | |
|         token_ids = generate(
 | |
|             model=model,
 | |
|             idx=text_to_token_ids(input_text, tokenizer).to(device),
 | |
|             max_new_tokens=256,
 | |
|             context_size=BASE_CONFIG["context_length"],
 | |
|             eos_id=50256
 | |
|         )
 | |
|         generated_text = token_ids_to_text(token_ids, tokenizer)
 | |
|         response_text = generated_text[len(input_text):].replace("### Response:", "").strip()
 | |
| 
 | |
|         test_data[i]["model_response"] = response_text
 | |
| 
 | |
|     test_data_path = "instruction-data-with-response-standalone.json"
 | |
|     with open(test_data_path, "w") as file:
 | |
|         json.dump(test_data, file, indent=4)  # "indent" for pretty-printing
 | |
|     print(f"Responses saved as {test_data_path}")
 | |
| 
 | |
|     file_name = f"{re.sub(r'[ ()]', '', CHOOSE_MODEL) }-sft-standalone.pth"
 | |
|     torch.save(model.state_dict(), file_name)
 | |
|     print(f"Model saved as {file_name}")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     import argparse
 | |
| 
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="Finetune a GPT model for classification"
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--test_mode",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help=("This flag runs the model in test mode for internal testing purposes. "
 | |
|               "Otherwise, it runs the model as it is used in the chapter (recommended).")
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     main(args.test_mode)
 | 
