mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 03:40:21 +00:00 
			
		
		
		
	* updated .gitignore * removed unused GELU import * fixed model_configs, fixed all tensors on same device * removed unused tiktoken * update * update hparam search * remove redundant tokenizer argument --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
		
			
				
	
	
		
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | 
						|
# Source for "Build a Large Language Model From Scratch"
 | 
						|
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | 
						|
# Code: https://github.com/rasbt/LLMs-from-scratch
 | 
						|
 | 
						|
import argparse
 | 
						|
from pathlib import Path
 | 
						|
import time
 | 
						|
 | 
						|
import pandas as pd
 | 
						|
import torch
 | 
						|
from torch.utils.data import DataLoader
 | 
						|
from torch.utils.data import Dataset
 | 
						|
 | 
						|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
 | 
						|
 | 
						|
 | 
						|
class IMDBDataset(Dataset):
 | 
						|
    def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
 | 
						|
        self.data = pd.read_csv(csv_file)
 | 
						|
        self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
 | 
						|
 | 
						|
        # Pre-tokenize texts
 | 
						|
        self.encoded_texts = [
 | 
						|
            tokenizer.encode(text)[:self.max_length]
 | 
						|
            for text in self.data["text"]
 | 
						|
        ]
 | 
						|
        # Pad sequences to the longest sequence
 | 
						|
 | 
						|
        # Debug
 | 
						|
        pad_token_id = 0
 | 
						|
 | 
						|
        self.encoded_texts = [
 | 
						|
            et + [pad_token_id] * (self.max_length - len(et))
 | 
						|
            for et in self.encoded_texts
 | 
						|
        ]
 | 
						|
 | 
						|
    def __getitem__(self, index):
 | 
						|
        encoded = self.encoded_texts[index]
 | 
						|
        label = self.data.iloc[index]["label"]
 | 
						|
        return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        return len(self.data)
 | 
						|
 | 
						|
    def _longest_encoded_length(self, tokenizer):
 | 
						|
        max_length = 0
 | 
						|
        for text in self.data["text"]:
 | 
						|
            encoded_length = len(tokenizer.encode(text))
 | 
						|
            if encoded_length > max_length:
 | 
						|
                max_length = encoded_length
 | 
						|
        return max_length
 | 
						|
 | 
						|
 | 
						|
def calc_loss_batch(input_batch, target_batch, model, device):
 | 
						|
    input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | 
						|
    # logits = model(input_batch)[:, -1, :]  # Logits of last output token
 | 
						|
    logits = model(input_batch).logits
 | 
						|
    loss = torch.nn.functional.cross_entropy(logits, target_batch)
 | 
						|
    return loss
 | 
						|
 | 
						|
 | 
						|
# Same as in chapter 5
 | 
						|
def calc_loss_loader(data_loader, model, device, num_batches=None):
 | 
						|
    total_loss = 0.
 | 
						|
    if num_batches is None:
 | 
						|
        num_batches = len(data_loader)
 | 
						|
    else:
 | 
						|
        # Reduce the number of batches to match the total number of batches in the data loader
 | 
						|
        # if num_batches exceeds the number of batches in the data loader
 | 
						|
        num_batches = min(num_batches, len(data_loader))
 | 
						|
    for i, (input_batch, target_batch) in enumerate(data_loader):
 | 
						|
        if i < num_batches:
 | 
						|
            loss = calc_loss_batch(input_batch, target_batch, model, device)
 | 
						|
            total_loss += loss.item()
 | 
						|
        else:
 | 
						|
            break
 | 
						|
    return total_loss / num_batches
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()  # Disable gradient tracking for efficiency
 | 
						|
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
 | 
						|
    model.eval()
 | 
						|
    correct_predictions, num_examples = 0, 0
 | 
						|
 | 
						|
    if num_batches is None:
 | 
						|
        num_batches = len(data_loader)
 | 
						|
    else:
 | 
						|
        num_batches = min(num_batches, len(data_loader))
 | 
						|
    for i, (input_batch, target_batch) in enumerate(data_loader):
 | 
						|
        if i < num_batches:
 | 
						|
            input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | 
						|
            # logits = model(input_batch)[:, -1, :]  # Logits of last output token
 | 
						|
            logits = model(input_batch).logits
 | 
						|
            predicted_labels = torch.argmax(logits, dim=1)
 | 
						|
            num_examples += predicted_labels.shape[0]
 | 
						|
            correct_predictions += (predicted_labels == target_batch).sum().item()
 | 
						|
        else:
 | 
						|
            break
 | 
						|
    return correct_predictions / num_examples
 | 
						|
 | 
						|
 | 
						|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
 | 
						|
    model.eval()
 | 
						|
    with torch.no_grad():
 | 
						|
        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
 | 
						|
        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
 | 
						|
    model.train()
 | 
						|
    return train_loss, val_loss
 | 
						|
 | 
						|
 | 
						|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | 
						|
                            eval_freq, eval_iter, max_steps=None):
 | 
						|
    # Initialize lists to track losses and tokens seen
 | 
						|
    train_losses, val_losses, train_accs, val_accs = [], [], [], []
 | 
						|
    examples_seen, global_step = 0, -1
 | 
						|
 | 
						|
    # Main training loop
 | 
						|
    for epoch in range(num_epochs):
 | 
						|
        model.train()  # Set model to training mode
 | 
						|
 | 
						|
        for input_batch, target_batch in train_loader:
 | 
						|
            optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
 | 
						|
            loss = calc_loss_batch(input_batch, target_batch, model, device)
 | 
						|
            loss.backward()  # Calculate loss gradients
 | 
						|
            optimizer.step()  # Update model weights using loss gradients
 | 
						|
            examples_seen += input_batch.shape[0]  # New: track examples instead of tokens
 | 
						|
            global_step += 1
 | 
						|
 | 
						|
            # Optional evaluation step
 | 
						|
            if global_step % eval_freq == 0:
 | 
						|
                train_loss, val_loss = evaluate_model(
 | 
						|
                    model, train_loader, val_loader, device, eval_iter)
 | 
						|
                train_losses.append(train_loss)
 | 
						|
                val_losses.append(val_loss)
 | 
						|
                print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | 
						|
                      f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | 
						|
 | 
						|
            if max_steps is not None and global_step > max_steps:
 | 
						|
                break
 | 
						|
 | 
						|
        # New: Calculate accuracy after each epoch
 | 
						|
        train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
 | 
						|
        val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
 | 
						|
        print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
 | 
						|
        print(f"Validation accuracy: {val_accuracy*100:.2f}%")
 | 
						|
        train_accs.append(train_accuracy)
 | 
						|
        val_accs.append(val_accuracy)
 | 
						|
 | 
						|
        if max_steps is not None and global_step > max_steps:
 | 
						|
            break
 | 
						|
 | 
						|
    return train_losses, val_losses, train_accs, val_accs, examples_seen
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument(
 | 
						|
        "--trainable_layers",
 | 
						|
        type=str,
 | 
						|
        default="last_block",
 | 
						|
        help=(
 | 
						|
            "Which layers to train. Options: 'all', 'last_block', 'last_layer'."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--bert_model",
 | 
						|
        type=str,
 | 
						|
        default="distilbert",
 | 
						|
        help=(
 | 
						|
            "Which layers to train. Options: 'all', 'last_block', 'last_layer'."
 | 
						|
        )
 | 
						|
    )
 | 
						|
    args = parser.parse_args()
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Load model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    torch.manual_seed(123)
 | 
						|
    if args.bert_model == "distilbert":
 | 
						|
 | 
						|
        model = AutoModelForSequenceClassification.from_pretrained(
 | 
						|
            "distilbert-base-uncased", num_labels=2
 | 
						|
        )
 | 
						|
        model.out_head = torch.nn.Linear(in_features=768, out_features=2)
 | 
						|
 | 
						|
        if args.trainable_layers == "last_layer":
 | 
						|
            pass
 | 
						|
        elif args.trainable_layers == "last_block":
 | 
						|
            for param in model.pre_classifier.parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
            for param in model.distilbert.transformer.layer[-1].parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
        elif args.trainable_layers == "all":
 | 
						|
            for param in model.parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid --trainable_layers argument.")
 | 
						|
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
 | 
						|
 | 
						|
    elif args.bert_model == "roberta":
 | 
						|
 | 
						|
        model = AutoModelForSequenceClassification.from_pretrained(
 | 
						|
            "FacebookAI/roberta-large", num_labels=2
 | 
						|
        )
 | 
						|
        model.classifier.out_proj = torch.nn.Linear(in_features=1024, out_features=2)
 | 
						|
 | 
						|
        if args.trainable_layers == "last_layer":
 | 
						|
            pass
 | 
						|
        elif args.trainable_layers == "last_block":
 | 
						|
            for param in model.classifier.parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
            for param in model.roberta.encoder.layer[-1].parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
        elif args.trainable_layers == "all":
 | 
						|
            for param in model.parameters():
 | 
						|
                param.requires_grad = True
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid --trainable_layers argument.")
 | 
						|
 | 
						|
        tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-large")
 | 
						|
 | 
						|
    else:
 | 
						|
        raise ValueError("Selected --bert_model not supported.")
 | 
						|
 | 
						|
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
						|
    model.to(device)
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Instantiate dataloaders
 | 
						|
    ###############################
 | 
						|
 | 
						|
    pad_token_id = tokenizer.encode(tokenizer.pad_token)
 | 
						|
 | 
						|
    base_path = Path(".")
 | 
						|
 | 
						|
    train_dataset = IMDBDataset(base_path / "train.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
 | 
						|
    val_dataset = IMDBDataset(base_path / "validation.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
 | 
						|
    test_dataset = IMDBDataset(base_path / "test.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
 | 
						|
 | 
						|
    num_workers = 0
 | 
						|
    batch_size = 8
 | 
						|
 | 
						|
    train_loader = DataLoader(
 | 
						|
        dataset=train_dataset,
 | 
						|
        batch_size=batch_size,
 | 
						|
        shuffle=True,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=True,
 | 
						|
    )
 | 
						|
 | 
						|
    val_loader = DataLoader(
 | 
						|
        dataset=val_dataset,
 | 
						|
        batch_size=batch_size,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=False,
 | 
						|
    )
 | 
						|
 | 
						|
    test_loader = DataLoader(
 | 
						|
        dataset=test_dataset,
 | 
						|
        batch_size=batch_size,
 | 
						|
        num_workers=num_workers,
 | 
						|
        drop_last=False,
 | 
						|
    )
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Train model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    start_time = time.time()
 | 
						|
    torch.manual_seed(123)
 | 
						|
    optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
 | 
						|
 | 
						|
    num_epochs = 3
 | 
						|
    train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
 | 
						|
        model, train_loader, val_loader, optimizer, device,
 | 
						|
        num_epochs=num_epochs, eval_freq=50, eval_iter=20,
 | 
						|
        max_steps=None
 | 
						|
    )
 | 
						|
 | 
						|
    end_time = time.time()
 | 
						|
    execution_time_minutes = (end_time - start_time) / 60
 | 
						|
    print(f"Training completed in {execution_time_minutes:.2f} minutes.")
 | 
						|
 | 
						|
    ###############################
 | 
						|
    # Evaluate model
 | 
						|
    ###############################
 | 
						|
 | 
						|
    print("\nEvaluating on the full datasets ...\n")
 | 
						|
 | 
						|
    train_accuracy = calc_accuracy_loader(train_loader, model, device)
 | 
						|
    val_accuracy = calc_accuracy_loader(val_loader, model, device)
 | 
						|
    test_accuracy = calc_accuracy_loader(test_loader, model, device)
 | 
						|
 | 
						|
    print(f"Training accuracy: {train_accuracy*100:.2f}%")
 | 
						|
    print(f"Validation accuracy: {val_accuracy*100:.2f}%")
 | 
						|
    print(f"Test accuracy: {test_accuracy*100:.2f}%")
 |