mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-09 17:23:06 +00:00
94 lines
2.8 KiB
Python
94 lines
2.8 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
from pathlib import Path
|
|
import sys
|
|
|
|
import tiktoken
|
|
import torch
|
|
import chainlit
|
|
|
|
from previous_chapters import (
|
|
generate,
|
|
GPTModel,
|
|
text_to_token_ids,
|
|
token_ids_to_text,
|
|
)
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
def get_model_and_tokenizer():
|
|
"""
|
|
Code to load a GPT-2 model with finetuned weights generated in chapter 7.
|
|
This requires that you run the code in chapter 7 first, which generates the necessary gpt2-medium355M-sft.pth file.
|
|
"""
|
|
|
|
GPT_CONFIG_355M = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 1024, # Shortened context length (orig: 1024)
|
|
"emb_dim": 1024, # Embedding dimension
|
|
"n_heads": 16, # Number of attention heads
|
|
"n_layers": 24, # Number of layers
|
|
"drop_rate": 0.0, # Dropout rate
|
|
"qkv_bias": True # Query-key-value bias
|
|
}
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
model_path = Path("..") / "01_main-chapter-code" / "gpt2-medium355M-sft.pth"
|
|
if not model_path.exists():
|
|
print(
|
|
f"Could not find the {model_path} file. Please run the chapter 7 code "
|
|
" (ch07.ipynb) to generate the gpt2-medium355M-sft.pt file."
|
|
)
|
|
sys.exit()
|
|
|
|
checkpoint = torch.load(model_path, weights_only=True)
|
|
model = GPTModel(GPT_CONFIG_355M)
|
|
model.load_state_dict(checkpoint)
|
|
model.to(device)
|
|
|
|
return tokenizer, model, GPT_CONFIG_355M
|
|
|
|
|
|
def extract_response(response_text, input_text):
|
|
return response_text[len(input_text):].replace("### Response:", "").strip()
|
|
|
|
|
|
# Obtain the necessary tokenizer and model files for the chainlit function below
|
|
tokenizer, model, model_config = get_model_and_tokenizer()
|
|
|
|
|
|
@chainlit.on_message
|
|
async def main(message: chainlit.Message):
|
|
"""
|
|
The main Chainlit function.
|
|
"""
|
|
|
|
torch.manual_seed(123)
|
|
|
|
prompt = f"""Below is an instruction that describes a task. Write a response
|
|
that appropriately completes the request.
|
|
|
|
### Instruction:
|
|
{message.content}
|
|
"""
|
|
|
|
token_ids = generate( # function uses `with torch.no_grad()` internally already
|
|
model=model,
|
|
idx=text_to_token_ids(prompt, tokenizer).to(device), # The user text is provided via as `message.content`
|
|
max_new_tokens=35,
|
|
context_size=model_config["context_length"],
|
|
eos_id=50256
|
|
)
|
|
|
|
text = token_ids_to_text(token_ids, tokenizer)
|
|
response = extract_response(text, prompt)
|
|
|
|
await chainlit.Message(
|
|
content=f"{response}", # This returns the model response to the interface
|
|
).send()
|