LLMs-from-scratch/ch05/12_gemma3/tests/test_gemma3_kv_nb.py
Sebastian Raschka f571b5e493
Add Gemma3 KV cache variant (#776)
* Add Gemma3 KV cache variant

* update
2025-08-19 12:37:49 -05:00

114 lines
3.7 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import importlib
from pathlib import Path
import pytest
import torch
from llms_from_scratch.utils import import_definitions_from_notebook
transformers_installed = importlib.util.find_spec("transformers") is not None
@pytest.fixture
def nb_imports():
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-gemma3-plus-kvcache.ipynb")
return mod
@pytest.fixture
def dummy_input():
torch.manual_seed(123)
return torch.randint(0, 100, (1, 8)) # batch size 1, seq length 8
@pytest.fixture
def dummy_cfg_base():
return {
"vocab_size": 100,
"emb_dim": 32,
"hidden_dim": 64,
"n_layers": 2,
"n_heads": 4,
"head_dim": 8,
"n_kv_groups": 1,
"qk_norm": True, # Gemma3 uses q/k RMSNorm
"dtype": torch.float32,
"rope_base": 1_000_000.0, # global RoPE base
"rope_local_base": 10_000.0, # local RoPE base (unused in these tests)
"context_length": 64,
"sliding_window": 16,
"layer_types": ["full_attention", "full_attention"],
"query_pre_attn_scalar": 256,
}
@torch.inference_mode()
def test_dummy_gemma3_forward(dummy_cfg_base, dummy_input, nb_imports):
torch.manual_seed(123)
model = nb_imports.Gemma3Model(dummy_cfg_base)
out = model(dummy_input)
assert out.shape == (1, dummy_input.size(1), dummy_cfg_base["vocab_size"])
@torch.inference_mode()
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_gemma3_base_equivalence_with_transformers(nb_imports):
from transformers import Gemma3TextConfig, Gemma3ForCausalLM
# Tiny config so the test is fast
cfg = {
"vocab_size": 257,
"context_length": 8,
"emb_dim": 32,
"n_heads": 4,
"n_layers": 2,
"hidden_dim": 64,
"head_dim": 8,
"qk_norm": True,
"n_kv_groups": 2,
"rope_base": 1_000_000.0,
"rope_local_base": 10_000.0,
"sliding_window": 4,
"layer_types": ["full_attention", "full_attention"],
"dtype": torch.float32,
"query_pre_attn_scalar": 256,
}
model = nb_imports.Gemma3Model(cfg)
hf_cfg = Gemma3TextConfig(
vocab_size=cfg["vocab_size"],
max_position_embeddings=cfg["context_length"],
hidden_size=cfg["emb_dim"],
num_attention_heads=cfg["n_heads"],
num_hidden_layers=cfg["n_layers"],
intermediate_size=cfg["hidden_dim"],
head_dim=cfg["head_dim"],
num_key_value_heads=cfg["n_kv_groups"],
rope_theta=cfg["rope_base"],
rope_local_base_freq=cfg["rope_local_base"],
layer_types=cfg["layer_types"],
sliding_window=cfg["sliding_window"],
tie_word_embeddings=False,
attn_implementation="eager",
torch_dtype=torch.float32,
query_pre_attn_scalar=cfg["query_pre_attn_scalar"],
rope_scaling={"rope_type": "default"},
)
hf_model = Gemma3ForCausalLM(hf_cfg)
hf_state = hf_model.state_dict()
param_config = {"n_layers": cfg["n_layers"], "hidden_dim": cfg["hidden_dim"]}
nb_imports.load_weights_into_gemma(model, param_config, hf_state)
x = torch.randint(0, cfg["vocab_size"], (2, cfg["context_length"]), dtype=torch.long)
ours_logits = model(x)
theirs_logits = hf_model(x).logits
torch.testing.assert_close(ours_logits, theirs_logits, rtol=1e-5, atol=1e-5)