Sebastian Raschka 7cd6a670ed
RoPE updates (#412)
* RoPE updates

* Apply suggestions from code review

* updates

* updates

* updates
2024-10-23 18:07:49 -05:00

341 lines
12 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
import io
import os
import sys
import types
import nbformat
from typing import Optional, Tuple
import torch
import pytest
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
def litgpt_build_rope_cache(
seq_len: int,
n_elem: int,
device: Optional[torch.device] = None,
base: int = 10000,
condense_ratio: int = 1,
extra_config: Optional[dict] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Enhanced Transformer with Rotary Position Embedding.
Args:
seq_len (int): Sequence length.
n_elem (int): Number of elements (head dimension).
device (torch.device, optional): Device for tensor allocations.
base (int, optional): Base for computing inverse frequencies.
condense_ratio (int, optional): Ratio to condense the position indices.
extra_config (dict, optional): Configuration parameters for frequency adjustments (used by Llama 3.1 and 3.2)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Cosine and sine caches for RoPE.
"""
# Compute the inverse frequencies theta
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
if extra_config is not None:
orig_context_len = extra_config["original_max_seq_len"]
factor = extra_config["factor"]
low_freq_factor = extra_config["low_freq_factor"]
high_freq_factor = extra_config["high_freq_factor"]
wavelen = 2 * torch.pi / theta
ratio = orig_context_len / wavelen
smooth_factor = (ratio - low_freq_factor) / (high_freq_factor - low_freq_factor)
smooth_factor = torch.clamp(smooth_factor, min=0.0, max=1.0)
# Compute adjusted_theta without masked indexing
adjusted_theta = (1 - smooth_factor) * (theta / factor) + smooth_factor * theta
theta = adjusted_theta
# Create position indices `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=device) / condense_ratio
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
return torch.cos(idx_theta), torch.sin(idx_theta)
# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
def litgpt_apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
head_size = x.size(-1)
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
x2 = x[..., head_size // 2:] # (B, nh, T, hs/2)
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
if cos.dim() > 1:
# batch dimensions must align
# sin/cos are (B, T, hs) so we unsqeeze -3 for nh
# we count from back because all of apply_rope does
cos = cos.unsqueeze(-3)
sin = sin.unsqueeze(-3)
roped = (x * cos) + (rotated * sin)
return roped.to(dtype=x.dtype)
@pytest.fixture(scope="module")
def notebook():
def import_definitions_from_notebook(notebooks):
imported_modules = {}
for fullname, names in notebooks.items():
# Get the directory of the current test file
current_dir = os.path.dirname(__file__)
path = os.path.join(current_dir, "..", fullname + ".ipynb")
path = os.path.normpath(path)
# Load the notebook
if not os.path.exists(path):
raise FileNotFoundError(f"Notebook file not found at: {path}")
with io.open(path, "r", encoding="utf-8") as f:
nb = nbformat.read(f, as_version=4)
# Create a module to store the imported functions and classes
mod = types.ModuleType(fullname)
sys.modules[fullname] = mod
# Go through the notebook cells and only execute function or class definitions
for cell in nb.cells:
if cell.cell_type == "code":
cell_code = cell.source
for name in names:
# Check for function or class definitions
if f"def {name}" in cell_code or f"class {name}" in cell_code:
exec(cell_code, mod.__dict__)
imported_modules[fullname] = mod
return imported_modules
notebooks = {
"converting-gpt-to-llama2": ["SiLU", "RMSNorm", "precompute_rope_params", "compute_rope"],
"converting-llama2-to-llama3": ["precompute_rope_params"]
}
return import_definitions_from_notebook(notebooks)
@pytest.fixture(autouse=True)
def set_seed():
torch.manual_seed(123)
def test_rope_llama2(notebook):
this_nb = notebook["converting-gpt-to-llama2"]
# Settings
batch_size = 1
context_len = 4096
num_heads = 4
head_dim = 16
# Instantiate RoPE parameters
cos, sin = this_nb.precompute_rope_params(head_dim=head_dim, context_length=context_len)
# Dummy query and key tensors
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = this_nb.compute_rope(queries, cos, sin)
keys_rot = this_nb.compute_rope(keys, cos, sin)
# Generate reference RoPE via HF
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=10_000
)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
# Generate reference RoPE via LitGPT
litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=10_000)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)
def test_rope_llama3(notebook):
nb1 = notebook["converting-gpt-to-llama2"]
nb2 = notebook["converting-llama2-to-llama3"]
# Settings
batch_size = 1
context_len = 8192
num_heads = 4
head_dim = 16
theta_base = 500_000
# Instantiate RoPE parameters
cos, sin = nb2.precompute_rope_params(
head_dim=head_dim,
context_length=context_len,
theta_base=theta_base
)
# Dummy query and key tensors
torch.manual_seed(123)
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)
# Generate reference RoPE via HF
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=theta_base
)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
# Generate reference RoPE via LitGPT
litgpt_cos, litgpt_sin = litgpt_build_rope_cache(context_len, n_elem=head_dim, base=theta_base)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)
def test_rope_llama3_12(notebook):
nb1 = notebook["converting-gpt-to-llama2"]
nb2 = notebook["converting-llama2-to-llama3"]
# Settings
batch_size = 1
context_len = 8192
num_heads = 4
head_dim = 16
rope_theta = 500_000
rope_config = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
# Instantiate RoPE parameters
cos, sin = nb2.precompute_rope_params(
head_dim=head_dim,
theta_base=rope_theta,
context_length=context_len,
freq_config=rope_config,
)
# Dummy query and key tensors
torch.manual_seed(123)
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = nb1.compute_rope(queries, cos, sin)
keys_rot = nb1.compute_rope(keys, cos, sin)
# Generate reference RoPE via HF
hf_rope_params = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
class RoPEConfig:
rope_type = "llama3"
rope_scaling = hf_rope_params
factor = 1.0
dim: int = head_dim
rope_theta = 500_000
max_position_embeddings: int = 8192
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
# Generate reference RoPE via LitGPT
litgpt_rope_config = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_seq_len": 8192
}
litgpt_cos, litgpt_sin = litgpt_build_rope_cache(
context_len,
n_elem=head_dim,
base=rope_theta,
extra_config=litgpt_rope_config
)
litgpt_queries_rot = litgpt_apply_rope(queries, litgpt_cos, litgpt_sin)
litgpt_keys_rot = litgpt_apply_rope(keys, litgpt_cos, litgpt_sin)
torch.testing.assert_close(sin, litgpt_sin)
torch.testing.assert_close(cos, litgpt_cos)
torch.testing.assert_close(keys_rot, litgpt_keys_rot)
torch.testing.assert_close(queries_rot, litgpt_queries_rot)
def test_silu(notebook):
example_batch = torch.randn(2, 3, 4)
silu = notebook["converting-gpt-to-llama2"].SiLU()
assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))
@pytest.mark.skipif(torch.__version__ < "2.4", reason="Requires PyTorch 2.4 or newer")
def test_rmsnorm(notebook):
example_batch = torch.randn(2, 3, 4)
rms_norm = notebook["converting-gpt-to-llama2"].RMSNorm(emb_dim=example_batch.shape[-1], eps=1e-5)
rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-5)
assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))