mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			103 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| import tiktoken
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| 
 | |
| 
 | |
| class GPTDatasetV1(Dataset):
 | |
|     def __init__(self, txt, tokenizer, max_length, stride):
 | |
|         self.input_ids = []
 | |
|         self.target_ids = []
 | |
| 
 | |
|         # Tokenize the entire text
 | |
|         token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
 | |
| 
 | |
|         # Use a sliding window to chunk the book into overlapping sequences of max_length
 | |
|         for i in range(0, len(token_ids) - max_length, stride):
 | |
|             input_chunk = token_ids[i:i + max_length]
 | |
|             target_chunk = token_ids[i + 1: i + max_length + 1]
 | |
|             self.input_ids.append(torch.tensor(input_chunk))
 | |
|             self.target_ids.append(torch.tensor(target_chunk))
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.input_ids)
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         return self.input_ids[idx], self.target_ids[idx]
 | |
| 
 | |
| 
 | |
| def create_dataloader_v1(txt, batch_size=4, max_length=256,
 | |
|                          stride=128, shuffle=True, drop_last=True, num_workers=0):
 | |
|     # Initialize the tokenizer
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
| 
 | |
|     # Create dataset
 | |
|     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
 | |
| 
 | |
|     # Create dataloader
 | |
|     dataloader = DataLoader(
 | |
|         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
 | |
| 
 | |
|     return dataloader
 | |
| 
 | |
| 
 | |
| class MultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
 | |
| 
 | |
|         self.d_out = d_out
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | |
| 
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape
 | |
| 
 | |
|         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         # We implicitly split the matrix by adding a `num_heads` dimension
 | |
|         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | |
|         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | |
|         keys = keys.transpose(1, 2)
 | |
|         queries = queries.transpose(1, 2)
 | |
|         values = values.transpose(1, 2)
 | |
| 
 | |
|         # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | |
|         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | |
| 
 | |
|         # Original mask truncated to the number of tokens and converted to boolean
 | |
|         mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | |
| 
 | |
|         # Use the mask to fill attention scores
 | |
|         attn_scores.masked_fill_(mask_bool, -torch.inf)
 | |
| 
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
|         attn_weights = self.dropout(attn_weights)
 | |
| 
 | |
|         # Shape: (b, num_tokens, num_heads, head_dim)
 | |
|         context_vec = (attn_weights @ values).transpose(1, 2)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
 | |
|         context_vec = self.out_proj(context_vec)  # optional projection
 | |
| 
 | |
|         return context_vec
 | 
