mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	 def84a039c
			
		
	
	
		def84a039c
		
	
	
	
	
		
			
			* Show epochs as integers on x-axis * Update ch07/01_main-chapter-code/previous_chapters.py * remove extra s * modify exercise plots * update chapter 7 plot * resave ch07 for better file diff
		
			
				
	
	
		
			471 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| #
 | |
| # This file collects all the relevant code that we covered thus far
 | |
| # throughout Chapters 2-6.
 | |
| # This file can be run as a standalone script.
 | |
| 
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| from matplotlib.ticker import MaxNLocator
 | |
| import numpy as np
 | |
| import tiktoken
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 2
 | |
| #####################################
 | |
| 
 | |
| 
 | |
| class GPTDatasetV1(Dataset):
 | |
|     def __init__(self, txt, tokenizer, max_length, stride):
 | |
|         self.tokenizer = tokenizer
 | |
|         self.input_ids = []
 | |
|         self.target_ids = []
 | |
| 
 | |
|         # Tokenize the entire text
 | |
|         token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
 | |
| 
 | |
|         # Use a sliding window to chunk the book into overlapping sequences of max_length
 | |
|         for i in range(0, len(token_ids) - max_length, stride):
 | |
|             input_chunk = token_ids[i:i + max_length]
 | |
|             target_chunk = token_ids[i + 1: i + max_length + 1]
 | |
|             self.input_ids.append(torch.tensor(input_chunk))
 | |
|             self.target_ids.append(torch.tensor(target_chunk))
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self.input_ids)
 | |
| 
 | |
|     def __getitem__(self, idx):
 | |
|         return self.input_ids[idx], self.target_ids[idx]
 | |
| 
 | |
| 
 | |
| def create_dataloader_v1(txt, batch_size=4, max_length=256,
 | |
|                          stride=128, shuffle=True, drop_last=True, num_workers=0):
 | |
|     # Initialize the tokenizer
 | |
|     tokenizer = tiktoken.get_encoding("gpt2")
 | |
| 
 | |
|     # Create dataset
 | |
|     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
 | |
| 
 | |
|     # Create dataloader
 | |
|     dataloader = DataLoader(
 | |
|         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
 | |
| 
 | |
|     return dataloader
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 3
 | |
| #####################################
 | |
| class MultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
 | |
| 
 | |
|         self.d_out = d_out
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | |
| 
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape
 | |
| 
 | |
|         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         # We implicitly split the matrix by adding a `num_heads` dimension
 | |
|         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | |
|         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | |
|         keys = keys.transpose(1, 2)
 | |
|         queries = queries.transpose(1, 2)
 | |
|         values = values.transpose(1, 2)
 | |
| 
 | |
|         # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | |
|         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | |
| 
 | |
|         # Original mask truncated to the number of tokens and converted to boolean
 | |
|         mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | |
| 
 | |
|         # Use the mask to fill attention scores
 | |
|         attn_scores.masked_fill_(mask_bool, -torch.inf)
 | |
| 
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
|         attn_weights = self.dropout(attn_weights)
 | |
| 
 | |
|         # Shape: (b, num_tokens, num_heads, head_dim)
 | |
|         context_vec = (attn_weights @ values).transpose(1, 2)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.reshape(b, num_tokens, self.d_out)
 | |
|         context_vec = self.out_proj(context_vec)  # optional projection
 | |
| 
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 4
 | |
| #####################################
 | |
| class LayerNorm(nn.Module):
 | |
|     def __init__(self, emb_dim):
 | |
|         super().__init__()
 | |
|         self.eps = 1e-5
 | |
|         self.scale = nn.Parameter(torch.ones(emb_dim))
 | |
|         self.shift = nn.Parameter(torch.zeros(emb_dim))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         mean = x.mean(dim=-1, keepdim=True)
 | |
|         var = x.var(dim=-1, keepdim=True, unbiased=False)
 | |
|         norm_x = (x - mean) / torch.sqrt(var + self.eps)
 | |
|         return self.scale * norm_x + self.shift
 | |
| 
 | |
| 
 | |
| class GELU(nn.Module):
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return 0.5 * x * (1 + torch.tanh(
 | |
|             torch.sqrt(torch.tensor(2.0 / torch.pi)) *
 | |
|             (x + 0.044715 * torch.pow(x, 3))
 | |
|         ))
 | |
| 
 | |
| 
 | |
| class FeedForward(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.layers = nn.Sequential(
 | |
|             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | |
|             GELU(),
 | |
|             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return self.layers(x)
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.att = MultiHeadAttention(
 | |
|             d_in=cfg["emb_dim"],
 | |
|             d_out=cfg["emb_dim"],
 | |
|             context_length=cfg["context_length"],
 | |
|             num_heads=cfg["n_heads"],
 | |
|             dropout=cfg["drop_rate"],
 | |
|             qkv_bias=cfg["qkv_bias"])
 | |
|         self.ff = FeedForward(cfg)
 | |
|         self.norm1 = LayerNorm(cfg["emb_dim"])
 | |
|         self.norm2 = LayerNorm(cfg["emb_dim"])
 | |
|         self.drop_resid = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|     def forward(self, x):
 | |
|         # Shortcut connection for attention block
 | |
|         shortcut = x
 | |
|         x = self.norm1(x)
 | |
|         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_resid(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         # Shortcut connection for feed-forward block
 | |
|         shortcut = x
 | |
|         x = self.norm2(x)
 | |
|         x = self.ff(x)
 | |
|         x = self.drop_resid(x)
 | |
|         x = x + shortcut  # Add the original input back
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class GPTModel(nn.Module):
 | |
|     def __init__(self, cfg):
 | |
|         super().__init__()
 | |
|         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | |
|         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
 | |
|         self.drop_emb = nn.Dropout(cfg["drop_rate"])
 | |
| 
 | |
|         self.trf_blocks = nn.Sequential(
 | |
|             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
 | |
| 
 | |
|         self.final_norm = LayerNorm(cfg["emb_dim"])
 | |
|         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | |
| 
 | |
|     def forward(self, in_idx):
 | |
|         batch_size, seq_len = in_idx.shape
 | |
|         tok_embeds = self.tok_emb(in_idx)
 | |
|         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | |
|         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
 | |
|         x = self.drop_emb(x)
 | |
|         x = self.trf_blocks(x)
 | |
|         x = self.final_norm(x)
 | |
|         logits = self.out_head(x)
 | |
|         return logits
 | |
| 
 | |
| 
 | |
| def generate_text_simple(model, idx, max_new_tokens, context_size):
 | |
|     # idx is (B, T) array of indices in the current context
 | |
|     for _ in range(max_new_tokens):
 | |
| 
 | |
|         # Crop current context if it exceeds the supported context size
 | |
|         # E.g., if LLM supports only 5 tokens, and the context size is 10
 | |
|         # then only the last 5 tokens are used as context
 | |
|         idx_cond = idx[:, -context_size:]
 | |
| 
 | |
|         # Get the predictions
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
| 
 | |
|         # Focus only on the last time step
 | |
|         # (batch, n_token, vocab_size) becomes (batch, vocab_size)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # Get the idx of the vocab entry with the highest logits value
 | |
|         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)
 | |
| 
 | |
|         # Append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)
 | |
| 
 | |
|     return idx
 | |
| 
 | |
| 
 | |
| #####################################
 | |
| # Chapter 5
 | |
| #####################################
 | |
| def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
 | |
| 
 | |
|     # For-loop is the same as before: Get logits, and only focus on last time step
 | |
|     for _ in range(max_new_tokens):
 | |
|         idx_cond = idx[:, -context_size:]
 | |
|         with torch.no_grad():
 | |
|             logits = model(idx_cond)
 | |
|         logits = logits[:, -1, :]
 | |
| 
 | |
|         # New: Filter logits with top_k sampling
 | |
|         if top_k is not None:
 | |
|             # Keep only top_k values
 | |
|             top_logits, _ = torch.topk(logits, top_k)
 | |
|             min_val = top_logits[:, -1]
 | |
|             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
 | |
| 
 | |
|         # New: Apply temperature scaling
 | |
|         if temperature > 0.0:
 | |
|             logits = logits / temperature
 | |
| 
 | |
|             # Apply softmax to get probabilities
 | |
|             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)
 | |
| 
 | |
|             # Sample from the distribution
 | |
|             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)
 | |
| 
 | |
|         # Otherwise same as before: get idx of the vocab entry with the highest logits value
 | |
|         else:
 | |
|             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)
 | |
| 
 | |
|         if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
 | |
|             break
 | |
| 
 | |
|         # Same as before: append sampled index to the running sequence
 | |
|         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)
 | |
| 
 | |
|     return idx
 | |
| 
 | |
| 
 | |
| def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
 | |
|                        eval_freq, eval_iter, start_context, tokenizer):
 | |
|     # Initialize lists to track losses and tokens seen
 | |
|     train_losses, val_losses, track_tokens_seen = [], [], []
 | |
|     tokens_seen, global_step = 0, -1
 | |
| 
 | |
|     # Main training loop
 | |
|     for epoch in range(num_epochs):
 | |
|         model.train()  # Set model to training mode
 | |
| 
 | |
|         for input_batch, target_batch in train_loader:
 | |
|             optimizer.zero_grad()  # Reset loss gradients from previous batch iteration
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             loss.backward()  # Calculate loss gradients
 | |
|             optimizer.step()  # Update model weights using loss gradients
 | |
|             tokens_seen += input_batch.numel()
 | |
|             global_step += 1
 | |
| 
 | |
|             # Optional evaluation step
 | |
|             if global_step % eval_freq == 0:
 | |
|                 train_loss, val_loss = evaluate_model(
 | |
|                     model, train_loader, val_loader, device, eval_iter)
 | |
|                 train_losses.append(train_loss)
 | |
|                 val_losses.append(val_loss)
 | |
|                 track_tokens_seen.append(tokens_seen)
 | |
|                 print(f"Ep {epoch+1} (Step {global_step:06d}): "
 | |
|                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
 | |
| 
 | |
|         # Print a sample text after each epoch
 | |
|         generate_and_print_sample(
 | |
|             model, tokenizer, device, start_context
 | |
|         )
 | |
| 
 | |
|     return train_losses, val_losses, track_tokens_seen
 | |
| 
 | |
| 
 | |
| def evaluate_model(model, train_loader, val_loader, device, eval_iter):
 | |
|     model.eval()
 | |
|     with torch.no_grad():
 | |
|         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
 | |
|         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
 | |
|     model.train()
 | |
|     return train_loss, val_loss
 | |
| 
 | |
| 
 | |
| def generate_and_print_sample(model, tokenizer, device, start_context):
 | |
|     model.eval()
 | |
|     context_size = model.pos_emb.weight.shape[0]
 | |
|     encoded = text_to_token_ids(start_context, tokenizer).to(device)
 | |
|     with torch.no_grad():
 | |
|         token_ids = generate_text_simple(
 | |
|             model=model, idx=encoded,
 | |
|             max_new_tokens=50, context_size=context_size
 | |
|         )
 | |
|         decoded_text = token_ids_to_text(token_ids, tokenizer)
 | |
|         print(decoded_text.replace("\n", " "))  # Compact print format
 | |
|     model.train()
 | |
| 
 | |
| 
 | |
| def assign(left, right):
 | |
|     if left.shape != right.shape:
 | |
|         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
 | |
|     return torch.nn.Parameter(torch.tensor(right))
 | |
| 
 | |
| 
 | |
| def load_weights_into_gpt(gpt, params):
 | |
|     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
 | |
|     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
 | |
| 
 | |
|     for b in range(len(params["blocks"])):
 | |
|         q_w, k_w, v_w = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.weight, q_w.T)
 | |
|         gpt.trf_blocks[b].att.W_key.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.weight, k_w.T)
 | |
|         gpt.trf_blocks[b].att.W_value.weight = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.weight, v_w.T)
 | |
| 
 | |
|         q_b, k_b, v_b = np.split(
 | |
|             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
 | |
|         gpt.trf_blocks[b].att.W_query.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_query.bias, q_b)
 | |
|         gpt.trf_blocks[b].att.W_key.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_key.bias, k_b)
 | |
|         gpt.trf_blocks[b].att.W_value.bias = assign(
 | |
|             gpt.trf_blocks[b].att.W_value.bias, v_b)
 | |
| 
 | |
|         gpt.trf_blocks[b].att.out_proj.weight = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.weight,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].att.out_proj.bias = assign(
 | |
|             gpt.trf_blocks[b].att.out_proj.bias,
 | |
|             params["blocks"][b]["attn"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].ff.layers[0].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].weight,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[0].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[0].bias,
 | |
|             params["blocks"][b]["mlp"]["c_fc"]["b"])
 | |
|         gpt.trf_blocks[b].ff.layers[2].weight = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].weight,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["w"].T)
 | |
|         gpt.trf_blocks[b].ff.layers[2].bias = assign(
 | |
|             gpt.trf_blocks[b].ff.layers[2].bias,
 | |
|             params["blocks"][b]["mlp"]["c_proj"]["b"])
 | |
| 
 | |
|         gpt.trf_blocks[b].norm1.scale = assign(
 | |
|             gpt.trf_blocks[b].norm1.scale,
 | |
|             params["blocks"][b]["ln_1"]["g"])
 | |
|         gpt.trf_blocks[b].norm1.shift = assign(
 | |
|             gpt.trf_blocks[b].norm1.shift,
 | |
|             params["blocks"][b]["ln_1"]["b"])
 | |
|         gpt.trf_blocks[b].norm2.scale = assign(
 | |
|             gpt.trf_blocks[b].norm2.scale,
 | |
|             params["blocks"][b]["ln_2"]["g"])
 | |
|         gpt.trf_blocks[b].norm2.shift = assign(
 | |
|             gpt.trf_blocks[b].norm2.shift,
 | |
|             params["blocks"][b]["ln_2"]["b"])
 | |
| 
 | |
|     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
 | |
|     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
 | |
|     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
 | |
| 
 | |
| 
 | |
| def text_to_token_ids(text, tokenizer):
 | |
|     encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
 | |
|     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
 | |
|     return encoded_tensor
 | |
| 
 | |
| 
 | |
| def token_ids_to_text(token_ids, tokenizer):
 | |
|     flat = token_ids.squeeze(0)  # remove batch dimension
 | |
|     return tokenizer.decode(flat.tolist())
 | |
| 
 | |
| 
 | |
| def calc_loss_batch(input_batch, target_batch, model, device):
 | |
|     input_batch, target_batch = input_batch.to(device), target_batch.to(device)
 | |
|     logits = model(input_batch)
 | |
|     loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
 | |
|     return loss
 | |
| 
 | |
| 
 | |
| def calc_loss_loader(data_loader, model, device, num_batches=None):
 | |
|     total_loss = 0.
 | |
|     if len(data_loader) == 0:
 | |
|         return float("nan")
 | |
|     elif num_batches is None:
 | |
|         num_batches = len(data_loader)
 | |
|     else:
 | |
|         # Reduce the number of batches to match the total number of batches in the data loader
 | |
|         # if num_batches exceeds the number of batches in the data loader
 | |
|         num_batches = min(num_batches, len(data_loader))
 | |
|     for i, (input_batch, target_batch) in enumerate(data_loader):
 | |
|         if i < num_batches:
 | |
|             loss = calc_loss_batch(input_batch, target_batch, model, device)
 | |
|             total_loss += loss.item()
 | |
|         else:
 | |
|             break
 | |
|     return total_loss / num_batches
 | |
| 
 | |
| 
 | |
| def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
 | |
|     fig, ax1 = plt.subplots(figsize=(5, 3))
 | |
| 
 | |
|     # Plot training and validation loss against epochs
 | |
|     ax1.plot(epochs_seen, train_losses, label="Training loss")
 | |
|     ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
 | |
|     ax1.set_xlabel("Epochs")
 | |
|     ax1.set_ylabel("Loss")
 | |
|     ax1.legend(loc="upper right")
 | |
|     ax1.xaxis.set_major_locator(MaxNLocator(integer=True))  # only show integer labels on x-axis
 | |
| 
 | |
|     # Create a second x-axis for tokens seen
 | |
|     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis
 | |
|     ax2.plot(tokens_seen, train_losses, alpha=0)  # Invisible plot for aligning ticks
 | |
|     ax2.set_xlabel("Tokens seen")
 | |
| 
 | |
|     fig.tight_layout()  # Adjust layout to make room
 | |
|     plt.savefig("loss-plot.pdf")
 | |
|     plt.show()
 |