mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-30 17:29:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| 
 | |
| import os
 | |
| import requests
 | |
| import json
 | |
| import numpy as np
 | |
| import tensorflow as tf
 | |
| from tqdm import tqdm
 | |
| 
 | |
| 
 | |
| def download_and_load_gpt2(model_size, models_dir):
 | |
|     # Validate model size
 | |
|     allowed_sizes = ("124M", "355M", "774M", "1558M")
 | |
|     if model_size not in allowed_sizes:
 | |
|         raise ValueError(f"Model size not in {allowed_sizes}")
 | |
| 
 | |
|     # Define paths
 | |
|     model_dir = os.path.join(models_dir, model_size)
 | |
|     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
 | |
|     filenames = [
 | |
|         "checkpoint", "encoder.json", "hparams.json",
 | |
|         "model.ckpt.data-00000-of-00001", "model.ckpt.index",
 | |
|         "model.ckpt.meta", "vocab.bpe"
 | |
|     ]
 | |
| 
 | |
|     # Download files
 | |
|     os.makedirs(model_dir, exist_ok=True)
 | |
|     for filename in filenames:
 | |
|         file_url = os.path.join(base_url, model_size, filename)
 | |
|         file_path = os.path.join(model_dir, filename)
 | |
|         download_file(file_url, file_path)
 | |
| 
 | |
|     # Load settings and params
 | |
|     tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
 | |
|     settings = json.load(open(os.path.join(model_dir, "hparams.json")))
 | |
|     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
 | |
| 
 | |
|     return settings, params
 | |
| 
 | |
| 
 | |
| def download_file(url, destination):
 | |
|     # Send a GET request to download the file in streaming mode
 | |
|     response = requests.get(url, stream=True)
 | |
| 
 | |
|     # Get the total file size from headers, defaulting to 0 if not present
 | |
|     file_size = int(response.headers.get("content-length", 0))
 | |
| 
 | |
|     # Check if file exists and has the same size
 | |
|     if os.path.exists(destination):
 | |
|         file_size_local = os.path.getsize(destination)
 | |
|         if file_size == file_size_local:
 | |
|             print(f"File already exists and is up-to-date: {destination}")
 | |
|             return
 | |
| 
 | |
|     # Define the block size for reading the file
 | |
|     block_size = 1024  # 1 Kilobyte
 | |
| 
 | |
|     # Initialize the progress bar with total file size
 | |
|     progress_bar_description = url.split("/")[-1]  # Extract filename from URL
 | |
|     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
 | |
|         # Open the destination file in binary write mode
 | |
|         with open(destination, "wb") as file:
 | |
|             # Iterate over the file data in chunks
 | |
|             for chunk in response.iter_content(block_size):
 | |
|                 progress_bar.update(len(chunk))  # Update progress bar
 | |
|                 file.write(chunk)  # Write the chunk to the file
 | |
| 
 | |
| 
 | |
| def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
 | |
|     # Initialize parameters dictionary with empty blocks for each layer
 | |
|     params = {"blocks": [{} for _ in range(settings["n_layer"])]}
 | |
| 
 | |
|     # Iterate over each variable in the checkpoint
 | |
|     for name, _ in tf.train.list_variables(ckpt_path):
 | |
|         # Load the variable and remove singleton dimensions
 | |
|         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
 | |
| 
 | |
|         # Process the variable name to extract relevant parts
 | |
|         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix
 | |
| 
 | |
|         # Identify the target dictionary for the variable
 | |
|         target_dict = params
 | |
|         if variable_name_parts[0].startswith("h"):
 | |
|             layer_number = int(variable_name_parts[0][1:])
 | |
|             target_dict = params["blocks"][layer_number]
 | |
| 
 | |
|         # Recursively access or create nested dictionaries
 | |
|         for key in variable_name_parts[1:-1]:
 | |
|             target_dict = target_dict.setdefault(key, {})
 | |
| 
 | |
|         # Assign the variable array to the last key
 | |
|         last_key = variable_name_parts[-1]
 | |
|         target_dict[last_key] = variable_array
 | |
| 
 | |
|     return params
 | 
