LightRAG/examples/lightrag_openai_mongodb_graph_demo.py

108 lines
2.8 KiB
Python
Raw Permalink Normal View History

2025-01-29 07:31:34 -05:00
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
2025-03-03 18:33:42 +08:00
from lightrag.kg.shared_storage import initialize_pipeline_status
2025-01-29 07:31:34 -05:00
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./mongodb_test_dir"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
os.environ["OPENAI_API_KEY"] = "sk-"
os.environ["MONGO_URI"] = "mongodb://0.0.0.0:27017/?directConnection=true"
os.environ["MONGO_DATABASE"] = "LightRAG"
os.environ["MONGO_KG_COLLECTION"] = "MDB_KG"
# Embedding Configuration and Functions
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model=EMBEDDING_MODEL,
)
async def get_embedding_dimension():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
return embedding.shape[1]
async def create_embedding_function_instance():
# Get embedding dimension
embedding_dimension = await get_embedding_dimension()
# Create embedding function instance
return EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
)
async def initialize_rag():
embedding_func_instance = await create_embedding_function_instance()
2025-03-03 18:33:42 +08:00
rag = LightRAG(
2025-01-29 07:31:34 -05:00
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete,
embedding_func=embedding_func_instance,
graph_storage="MongoGraphStorage",
log_level="DEBUG",
)
2025-03-03 18:33:42 +08:00
await rag.initialize_storages()
await initialize_pipeline_status()
2025-01-29 07:31:34 -05:00
2025-03-03 18:33:42 +08:00
return rag
2025-01-29 07:31:34 -05:00
2025-03-03 18:33:42 +08:00
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
2025-03-03 18:40:03 +08:00
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
2025-03-03 18:33:42 +08:00
)
# Perform local search
print(
2025-03-03 18:40:03 +08:00
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
2025-03-03 18:33:42 +08:00
)
# Perform global search
print(
2025-03-03 18:40:03 +08:00
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
2025-03-03 18:33:42 +08:00
)
# Perform hybrid search
print(
2025-03-03 18:40:03 +08:00
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
2025-03-03 18:33:42 +08:00
)
2025-03-03 18:40:03 +08:00
2025-03-03 18:33:42 +08:00
if __name__ == "__main__":
2025-03-03 18:40:03 +08:00
main()