mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
102 lines
3.4 KiB
Python
102 lines
3.4 KiB
Python
![]() |
import os
|
||
|
from lightrag import LightRAG, QueryParam
|
||
|
from lightrag.wrapper.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
|
||
|
from lightrag.utils import EmbeddingFunc
|
||
|
from llama_index.llms.litellm import LiteLLM
|
||
|
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
||
|
import asyncio
|
||
|
|
||
|
# Configure working directory
|
||
|
DEFAULT_RAG_DIR = "index_default"
|
||
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
||
|
|
||
|
# Model configuration
|
||
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o")
|
||
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
||
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "embedding-model")
|
||
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||
|
|
||
|
# LiteLLM configuration
|
||
|
LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
|
||
|
print(f"LITELLM_URL: {LITELLM_URL}")
|
||
|
LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-1234")
|
||
|
|
||
|
if not os.path.exists(WORKING_DIR):
|
||
|
os.mkdir(WORKING_DIR)
|
||
|
|
||
|
# Initialize LLM function
|
||
|
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||
|
try:
|
||
|
# Initialize LiteLLM if not in kwargs
|
||
|
if 'llm_instance' not in kwargs:
|
||
|
llm_instance = LiteLLM(
|
||
|
model=f"openai/{LLM_MODEL}", # Format: "provider/model_name"
|
||
|
api_base=LITELLM_URL,
|
||
|
api_key=LITELLM_KEY,
|
||
|
temperature=0.7,
|
||
|
)
|
||
|
kwargs['llm_instance'] = llm_instance
|
||
|
|
||
|
response = await llama_index_complete_if_cache(
|
||
|
kwargs['llm_instance'],
|
||
|
prompt,
|
||
|
system_prompt=system_prompt,
|
||
|
history_messages=history_messages,
|
||
|
**kwargs,
|
||
|
)
|
||
|
return response
|
||
|
except Exception as e:
|
||
|
print(f"LLM request failed: {str(e)}")
|
||
|
raise
|
||
|
|
||
|
# Initialize embedding function
|
||
|
async def embedding_func(texts):
|
||
|
try:
|
||
|
embed_model = LiteLLMEmbedding(
|
||
|
model_name=f"openai/{EMBEDDING_MODEL}",
|
||
|
api_base=LITELLM_URL,
|
||
|
api_key=LITELLM_KEY,
|
||
|
)
|
||
|
return await llama_index_embed(texts, embed_model=embed_model)
|
||
|
except Exception as e:
|
||
|
print(f"Embedding failed: {str(e)}")
|
||
|
raise
|
||
|
|
||
|
# Get embedding dimension
|
||
|
async def get_embedding_dim():
|
||
|
test_text = ["This is a test sentence."]
|
||
|
embedding = await embedding_func(test_text)
|
||
|
embedding_dim = embedding.shape[1]
|
||
|
print(f"embedding_dim={embedding_dim}")
|
||
|
return embedding_dim
|
||
|
|
||
|
# Initialize RAG instance
|
||
|
rag = LightRAG(
|
||
|
working_dir=WORKING_DIR,
|
||
|
llm_model_func=llm_model_func,
|
||
|
embedding_func=EmbeddingFunc(
|
||
|
embedding_dim=asyncio.run(get_embedding_dim()),
|
||
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||
|
func=embedding_func,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# Insert example text
|
||
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
||
|
rag.insert(f.read())
|
||
|
|
||
|
# Test different query modes
|
||
|
print("\nNaive Search:")
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||
|
|
||
|
print("\nLocal Search:")
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||
|
|
||
|
print("\nGlobal Search:")
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||
|
|
||
|
print("\nHybrid Search:")
|
||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|