2024-10-10 15:02:30 +08:00
|
|
|
import asyncio
|
|
|
|
import os
|
|
|
|
from dataclasses import asdict, dataclass, field
|
|
|
|
from datetime import datetime
|
|
|
|
from functools import partial
|
2024-10-19 09:43:17 +05:30
|
|
|
from typing import Type, cast
|
2024-10-10 15:02:30 +08:00
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
from .llm import (
|
|
|
|
gpt_4o_mini_complete,
|
|
|
|
openai_embedding,
|
|
|
|
)
|
2024-10-10 15:02:30 +08:00
|
|
|
from .operate import (
|
|
|
|
chunking_by_token_size,
|
|
|
|
extract_entities,
|
|
|
|
local_query,
|
|
|
|
global_query,
|
2024-10-15 19:40:08 +08:00
|
|
|
hybrid_query,
|
2024-10-10 15:02:30 +08:00
|
|
|
naive_query,
|
|
|
|
)
|
|
|
|
|
|
|
|
from .storage import (
|
|
|
|
JsonKVStorage,
|
|
|
|
NanoVectorDBStorage,
|
|
|
|
NetworkXStorage,
|
|
|
|
)
|
|
|
|
from .utils import (
|
|
|
|
EmbeddingFunc,
|
|
|
|
compute_mdhash_id,
|
|
|
|
limit_async_func_call,
|
|
|
|
convert_response_to_json,
|
|
|
|
logger,
|
|
|
|
set_logger,
|
|
|
|
)
|
|
|
|
from .base import (
|
|
|
|
BaseGraphStorage,
|
|
|
|
BaseKVStorage,
|
|
|
|
BaseVectorStorage,
|
|
|
|
StorageNameSpace,
|
|
|
|
QueryParam,
|
|
|
|
)
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
|
|
try:
|
2024-10-15 19:40:08 +08:00
|
|
|
loop = asyncio.get_running_loop()
|
2024-10-10 15:02:30 +08:00
|
|
|
except RuntimeError:
|
|
|
|
logger.info("Creating a new event loop in a sub-thread.")
|
|
|
|
loop = asyncio.new_event_loop()
|
|
|
|
asyncio.set_event_loop(loop)
|
|
|
|
return loop
|
|
|
|
|
2024-10-15 19:40:08 +08:00
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
@dataclass
|
|
|
|
class LightRAG:
|
|
|
|
working_dir: str = field(
|
|
|
|
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
|
|
|
)
|
|
|
|
|
|
|
|
# text chunking
|
|
|
|
chunk_token_size: int = 1200
|
|
|
|
chunk_overlap_token_size: int = 100
|
|
|
|
tiktoken_model_name: str = "gpt-4o-mini"
|
|
|
|
|
|
|
|
# entity extraction
|
|
|
|
entity_extract_max_gleaning: int = 1
|
|
|
|
entity_summary_to_max_tokens: int = 500
|
|
|
|
|
|
|
|
# node embedding
|
|
|
|
node_embedding_algorithm: str = "node2vec"
|
|
|
|
node2vec_params: dict = field(
|
|
|
|
default_factory=lambda: {
|
|
|
|
"dimensions": 1536,
|
|
|
|
"num_walks": 10,
|
|
|
|
"walk_length": 40,
|
|
|
|
"window_size": 2,
|
|
|
|
"iterations": 3,
|
|
|
|
"random_seed": 3,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2024-10-14 20:33:46 +08:00
|
|
|
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
2024-10-19 09:43:17 +05:30
|
|
|
embedding_func: EmbeddingFunc = field(default_factory=lambda: openai_embedding)
|
2024-10-10 15:02:30 +08:00
|
|
|
embedding_batch_num: int = 32
|
|
|
|
embedding_func_max_async: int = 16
|
|
|
|
|
|
|
|
# LLM
|
2024-10-19 09:43:17 +05:30
|
|
|
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
|
|
|
|
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
2024-10-10 15:02:30 +08:00
|
|
|
llm_model_max_token_size: int = 32768
|
|
|
|
llm_model_max_async: int = 16
|
2024-10-21 11:53:06 +00:00
|
|
|
llm_model_kwargs: dict = field(default_factory=dict)
|
2024-10-10 15:02:30 +08:00
|
|
|
|
|
|
|
# storage
|
|
|
|
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
|
|
|
vector_db_storage_cls: Type[BaseVectorStorage] = NanoVectorDBStorage
|
|
|
|
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
|
|
|
graph_storage_cls: Type[BaseGraphStorage] = NetworkXStorage
|
|
|
|
enable_llm_cache: bool = True
|
|
|
|
|
|
|
|
# extension
|
|
|
|
addon_params: dict = field(default_factory=dict)
|
|
|
|
convert_response_to_json_func: callable = convert_response_to_json
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
def __post_init__(self):
|
2024-10-10 15:02:30 +08:00
|
|
|
log_file = os.path.join(self.working_dir, "lightrag.log")
|
|
|
|
set_logger(log_file)
|
|
|
|
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
_print_config = ",\n ".join([f"{k} = {v}" for k, v in asdict(self).items()])
|
|
|
|
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
|
|
|
|
|
|
|
if not os.path.exists(self.working_dir):
|
|
|
|
logger.info(f"Creating working directory {self.working_dir}")
|
|
|
|
os.makedirs(self.working_dir)
|
|
|
|
|
|
|
|
self.full_docs = self.key_string_value_json_storage_cls(
|
|
|
|
namespace="full_docs", global_config=asdict(self)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.text_chunks = self.key_string_value_json_storage_cls(
|
|
|
|
namespace="text_chunks", global_config=asdict(self)
|
|
|
|
)
|
|
|
|
|
|
|
|
self.llm_response_cache = (
|
|
|
|
self.key_string_value_json_storage_cls(
|
|
|
|
namespace="llm_response_cache", global_config=asdict(self)
|
|
|
|
)
|
|
|
|
if self.enable_llm_cache
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
|
|
|
namespace="chunk_entity_relation", global_config=asdict(self)
|
|
|
|
)
|
2024-10-15 21:11:12 +08:00
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
2024-10-15 21:11:12 +08:00
|
|
|
self.embedding_func
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
2024-10-15 19:40:08 +08:00
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
self.entities_vdb = self.vector_db_storage_cls(
|
|
|
|
namespace="entities",
|
|
|
|
global_config=asdict(self),
|
|
|
|
embedding_func=self.embedding_func,
|
|
|
|
meta_fields={"entity_name"},
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
self.relationships_vdb = self.vector_db_storage_cls(
|
|
|
|
namespace="relationships",
|
|
|
|
global_config=asdict(self),
|
|
|
|
embedding_func=self.embedding_func,
|
|
|
|
meta_fields={"src_id", "tgt_id"},
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
self.chunks_vdb = self.vector_db_storage_cls(
|
|
|
|
namespace="chunks",
|
|
|
|
global_config=asdict(self),
|
|
|
|
embedding_func=self.embedding_func,
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
2024-10-21 11:53:06 +00:00
|
|
|
partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
def insert(self, string_or_strings):
|
|
|
|
loop = always_get_an_event_loop()
|
|
|
|
return loop.run_until_complete(self.ainsert(string_or_strings))
|
|
|
|
|
|
|
|
async def ainsert(self, string_or_strings):
|
|
|
|
try:
|
|
|
|
if isinstance(string_or_strings, str):
|
|
|
|
string_or_strings = [string_or_strings]
|
|
|
|
|
|
|
|
new_docs = {
|
|
|
|
compute_mdhash_id(c.strip(), prefix="doc-"): {"content": c.strip()}
|
|
|
|
for c in string_or_strings
|
|
|
|
}
|
|
|
|
_add_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
|
|
|
|
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
|
|
|
|
if not len(new_docs):
|
2024-10-19 09:43:17 +05:30
|
|
|
logger.warning("All docs are already in the storage")
|
2024-10-10 15:02:30 +08:00
|
|
|
return
|
|
|
|
logger.info(f"[New Docs] inserting {len(new_docs)} docs")
|
|
|
|
|
|
|
|
inserting_chunks = {}
|
|
|
|
for doc_key, doc in new_docs.items():
|
|
|
|
chunks = {
|
|
|
|
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
|
|
|
**dp,
|
|
|
|
"full_doc_id": doc_key,
|
|
|
|
}
|
|
|
|
for dp in chunking_by_token_size(
|
|
|
|
doc["content"],
|
|
|
|
overlap_token_size=self.chunk_overlap_token_size,
|
|
|
|
max_token_size=self.chunk_token_size,
|
|
|
|
tiktoken_model=self.tiktoken_model_name,
|
|
|
|
)
|
|
|
|
}
|
|
|
|
inserting_chunks.update(chunks)
|
|
|
|
_add_chunk_keys = await self.text_chunks.filter_keys(
|
|
|
|
list(inserting_chunks.keys())
|
|
|
|
)
|
|
|
|
inserting_chunks = {
|
|
|
|
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
|
|
|
|
}
|
|
|
|
if not len(inserting_chunks):
|
2024-10-19 09:43:17 +05:30
|
|
|
logger.warning("All chunks are already in the storage")
|
2024-10-10 15:02:30 +08:00
|
|
|
return
|
|
|
|
logger.info(f"[New Chunks] inserting {len(inserting_chunks)} chunks")
|
|
|
|
|
|
|
|
await self.chunks_vdb.upsert(inserting_chunks)
|
|
|
|
|
|
|
|
logger.info("[Entity Extraction]...")
|
|
|
|
maybe_new_kg = await extract_entities(
|
|
|
|
inserting_chunks,
|
2024-10-26 00:11:21 -04:00
|
|
|
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
2024-10-10 15:02:30 +08:00
|
|
|
entity_vdb=self.entities_vdb,
|
|
|
|
relationships_vdb=self.relationships_vdb,
|
|
|
|
global_config=asdict(self),
|
|
|
|
)
|
|
|
|
if maybe_new_kg is None:
|
|
|
|
logger.warning("No new entities and relationships found")
|
|
|
|
return
|
|
|
|
self.chunk_entity_relation_graph = maybe_new_kg
|
|
|
|
|
|
|
|
await self.full_docs.upsert(new_docs)
|
|
|
|
await self.text_chunks.upsert(inserting_chunks)
|
|
|
|
finally:
|
|
|
|
await self._insert_done()
|
|
|
|
|
|
|
|
async def _insert_done(self):
|
|
|
|
tasks = []
|
|
|
|
for storage_inst in [
|
|
|
|
self.full_docs,
|
|
|
|
self.text_chunks,
|
|
|
|
self.llm_response_cache,
|
|
|
|
self.entities_vdb,
|
|
|
|
self.relationships_vdb,
|
|
|
|
self.chunks_vdb,
|
|
|
|
self.chunk_entity_relation_graph,
|
|
|
|
]:
|
|
|
|
if storage_inst is None:
|
|
|
|
continue
|
|
|
|
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
|
|
|
|
await asyncio.gather(*tasks)
|
|
|
|
|
|
|
|
def query(self, query: str, param: QueryParam = QueryParam()):
|
|
|
|
loop = always_get_an_event_loop()
|
|
|
|
return loop.run_until_complete(self.aquery(query, param))
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
async def aquery(self, query: str, param: QueryParam = QueryParam()):
|
|
|
|
if param.mode == "local":
|
|
|
|
response = await local_query(
|
|
|
|
query,
|
|
|
|
self.chunk_entity_relation_graph,
|
|
|
|
self.entities_vdb,
|
|
|
|
self.relationships_vdb,
|
|
|
|
self.text_chunks,
|
|
|
|
param,
|
|
|
|
asdict(self),
|
|
|
|
)
|
|
|
|
elif param.mode == "global":
|
|
|
|
response = await global_query(
|
|
|
|
query,
|
|
|
|
self.chunk_entity_relation_graph,
|
|
|
|
self.entities_vdb,
|
|
|
|
self.relationships_vdb,
|
|
|
|
self.text_chunks,
|
|
|
|
param,
|
|
|
|
asdict(self),
|
|
|
|
)
|
2024-10-15 19:40:08 +08:00
|
|
|
elif param.mode == "hybrid":
|
|
|
|
response = await hybrid_query(
|
2024-10-10 15:02:30 +08:00
|
|
|
query,
|
|
|
|
self.chunk_entity_relation_graph,
|
|
|
|
self.entities_vdb,
|
|
|
|
self.relationships_vdb,
|
|
|
|
self.text_chunks,
|
|
|
|
param,
|
|
|
|
asdict(self),
|
|
|
|
)
|
|
|
|
elif param.mode == "naive":
|
|
|
|
response = await naive_query(
|
|
|
|
query,
|
|
|
|
self.chunks_vdb,
|
|
|
|
self.text_chunks,
|
|
|
|
param,
|
|
|
|
asdict(self),
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown mode {param.mode}")
|
|
|
|
await self._query_done()
|
|
|
|
return response
|
|
|
|
|
|
|
|
async def _query_done(self):
|
|
|
|
tasks = []
|
|
|
|
for storage_inst in [self.llm_response_cache]:
|
|
|
|
if storage_inst is None:
|
|
|
|
continue
|
|
|
|
tasks.append(cast(StorageNameSpace, storage_inst).index_done_callback())
|
|
|
|
await asyncio.gather(*tasks)
|