2024-12-05 13:57:43 +08:00
|
|
|
|
import os
|
|
|
|
|
from dataclasses import dataclass
|
2025-02-09 19:51:05 +01:00
|
|
|
|
|
2025-02-05 02:48:12 +08:00
|
|
|
|
import numpy as np
|
2025-02-09 19:51:05 +01:00
|
|
|
|
import pipmaster as pm
|
|
|
|
|
from tqdm.asyncio import tqdm as tqdm_async
|
2025-01-27 23:21:34 +08:00
|
|
|
|
|
2025-01-27 09:35:50 +01:00
|
|
|
|
if not pm.is_installed("pymongo"):
|
|
|
|
|
pm.install("pymongo")
|
|
|
|
|
|
2025-02-05 02:48:12 +08:00
|
|
|
|
if not pm.is_installed("motor"):
|
|
|
|
|
pm.install("motor")
|
|
|
|
|
|
2025-02-09 19:51:05 +01:00
|
|
|
|
from typing import Any, List, Tuple, Union
|
|
|
|
|
|
2025-01-29 07:31:34 -05:00
|
|
|
|
from motor.motor_asyncio import AsyncIOMotorClient
|
2025-02-09 19:51:05 +01:00
|
|
|
|
from pymongo import MongoClient
|
2024-12-05 13:57:43 +08:00
|
|
|
|
|
2025-02-09 19:51:05 +01:00
|
|
|
|
from ..base import BaseGraphStorage, BaseKVStorage
|
2025-02-08 16:05:59 +08:00
|
|
|
|
from ..namespace import NameSpace, is_namespace
|
2025-02-09 19:51:05 +01:00
|
|
|
|
from ..utils import logger
|
2024-12-05 13:57:43 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
|
class MongoKVStorage(BaseKVStorage):
|
|
|
|
|
def __post_init__(self):
|
|
|
|
|
client = MongoClient(
|
|
|
|
|
os.environ.get("MONGO_URI", "mongodb://root:root@localhost:27017/")
|
|
|
|
|
)
|
|
|
|
|
database = client.get_database(os.environ.get("MONGO_DATABASE", "LightRAG"))
|
|
|
|
|
self._data = database.get_collection(self.namespace)
|
|
|
|
|
logger.info(f"Use MongoDB as KV {self.namespace}")
|
|
|
|
|
|
2025-02-09 19:51:05 +01:00
|
|
|
|
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
2024-12-05 13:57:43 +08:00
|
|
|
|
return self._data.find_one({"_id": id})
|
|
|
|
|
|
2025-02-09 10:33:15 +01:00
|
|
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
2025-02-08 23:18:12 +01:00
|
|
|
|
return list(self._data.find({"_id": {"$in": ids}}))
|
2024-12-05 13:57:43 +08:00
|
|
|
|
|
2025-02-09 19:21:49 +01:00
|
|
|
|
async def filter_keys(self, data: set[str]) -> set[str]:
|
2024-12-05 13:57:43 +08:00
|
|
|
|
existing_ids = [
|
|
|
|
|
str(x["_id"]) for x in self._data.find({"_id": {"$in": data}}, {"_id": 1})
|
|
|
|
|
]
|
|
|
|
|
return set([s for s in data if s not in existing_ids])
|
|
|
|
|
|
2025-02-08 23:18:12 +01:00
|
|
|
|
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
2025-02-08 16:05:59 +08:00
|
|
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
2025-01-13 07:06:01 +00:00
|
|
|
|
for mode, items in data.items():
|
|
|
|
|
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
|
|
|
|
key = f"{mode}_{k}"
|
2025-01-13 07:27:30 +00:00
|
|
|
|
result = self._data.update_one(
|
|
|
|
|
{"_id": key}, {"$setOnInsert": v}, upsert=True
|
|
|
|
|
)
|
2025-01-13 07:06:01 +00:00
|
|
|
|
if result.upserted_id:
|
|
|
|
|
logger.debug(f"\nInserted new document with key: {key}")
|
|
|
|
|
data[mode][k]["_id"] = key
|
|
|
|
|
else:
|
|
|
|
|
for k, v in tqdm_async(data.items(), desc="Upserting"):
|
|
|
|
|
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
|
|
|
|
data[k]["_id"] = k
|
2025-01-13 07:27:30 +00:00
|
|
|
|
|
2025-01-13 07:06:01 +00:00
|
|
|
|
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
2025-02-08 16:05:59 +08:00
|
|
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
2025-01-13 07:06:01 +00:00
|
|
|
|
res = {}
|
2025-01-13 07:27:30 +00:00
|
|
|
|
v = self._data.find_one({"_id": mode + "_" + id})
|
2025-01-13 07:06:01 +00:00
|
|
|
|
if v:
|
|
|
|
|
res[id] = v
|
2025-01-13 07:27:30 +00:00
|
|
|
|
logger.debug(f"llm_response_cache find one by:{id}")
|
2025-01-13 07:06:01 +00:00
|
|
|
|
return res
|
|
|
|
|
else:
|
|
|
|
|
return None
|
|
|
|
|
else:
|
|
|
|
|
return None
|
2025-01-13 07:27:30 +00:00
|
|
|
|
|
2025-02-08 23:18:12 +01:00
|
|
|
|
async def drop(self) -> None:
|
|
|
|
|
"""Drop the collection"""
|
|
|
|
|
await self._data.drop()
|
|
|
|
|
|
2025-02-09 15:24:30 +01:00
|
|
|
|
|
2025-01-29 07:31:34 -05:00
|
|
|
|
@dataclass
|
|
|
|
|
class MongoGraphStorage(BaseGraphStorage):
|
|
|
|
|
"""
|
|
|
|
|
A concrete implementation using MongoDB’s $graphLookup to demonstrate multi-hop queries.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, namespace, global_config, embedding_func):
|
|
|
|
|
super().__init__(
|
|
|
|
|
namespace=namespace,
|
|
|
|
|
global_config=global_config,
|
|
|
|
|
embedding_func=embedding_func,
|
|
|
|
|
)
|
|
|
|
|
self.client = AsyncIOMotorClient(
|
|
|
|
|
os.environ.get("MONGO_URI", "mongodb://root:root@localhost:27017/")
|
|
|
|
|
)
|
|
|
|
|
self.db = self.client[os.environ.get("MONGO_DATABASE", "LightRAG")]
|
|
|
|
|
self.collection = self.db[os.environ.get("MONGO_KG_COLLECTION", "MDB_KG")]
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# HELPER: $graphLookup pipeline
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def _graph_lookup(
|
|
|
|
|
self, start_node_id: str, max_depth: int = None
|
|
|
|
|
) -> List[dict]:
|
|
|
|
|
"""
|
|
|
|
|
Performs a $graphLookup starting from 'start_node_id' and returns
|
|
|
|
|
all reachable documents (including the start node itself).
|
|
|
|
|
|
|
|
|
|
Pipeline Explanation:
|
|
|
|
|
- 1) $match: We match the start node document by _id = start_node_id.
|
|
|
|
|
- 2) $graphLookup:
|
|
|
|
|
"from": same collection,
|
|
|
|
|
"startWith": "$edges.target" (the immediate neighbors in 'edges'),
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "reachableNodes",
|
|
|
|
|
"maxDepth": max_depth (if provided),
|
|
|
|
|
"depthField": "depth" (used for debugging or filtering).
|
|
|
|
|
- 3) We add an $project or $unwind as needed to extract data.
|
|
|
|
|
"""
|
|
|
|
|
pipeline = [
|
|
|
|
|
{"$match": {"_id": start_node_id}},
|
|
|
|
|
{
|
|
|
|
|
"$graphLookup": {
|
|
|
|
|
"from": self.collection.name,
|
|
|
|
|
"startWith": "$edges.target",
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "reachableNodes",
|
|
|
|
|
"depthField": "depth",
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# If you want a limited depth (e.g., only 1 or 2 hops), set maxDepth
|
|
|
|
|
if max_depth is not None:
|
|
|
|
|
pipeline[1]["$graphLookup"]["maxDepth"] = max_depth
|
|
|
|
|
|
|
|
|
|
# Return the matching doc plus a field "reachableNodes"
|
|
|
|
|
cursor = self.collection.aggregate(pipeline)
|
|
|
|
|
results = await cursor.to_list(None)
|
|
|
|
|
|
|
|
|
|
# If there's no matching node, results = [].
|
|
|
|
|
# Otherwise, results[0] is the start node doc,
|
|
|
|
|
# plus results[0]["reachableNodes"] is the array of connected docs.
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# BASIC QUERIES
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def has_node(self, node_id: str) -> bool:
|
|
|
|
|
"""
|
|
|
|
|
Check if node_id is present in the collection by looking up its doc.
|
|
|
|
|
No real need for $graphLookup here, but let's keep it direct.
|
|
|
|
|
"""
|
|
|
|
|
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
|
|
|
|
|
return doc is not None
|
|
|
|
|
|
|
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
|
|
|
|
"""
|
|
|
|
|
Check if there's a direct single-hop edge from source_node_id to target_node_id.
|
|
|
|
|
|
|
|
|
|
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
|
|
|
|
|
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
|
|
|
|
|
and then see if the target node is in the "reachableNodes" at depth=0.
|
|
|
|
|
|
|
|
|
|
But typically for a direct edge, we might just do a find_one.
|
|
|
|
|
Below is a demonstration approach.
|
|
|
|
|
"""
|
|
|
|
|
# We can do a single-hop graphLookup (maxDepth=0 or 1).
|
|
|
|
|
# Then check if the target_node appears among the edges array.
|
|
|
|
|
pipeline = [
|
|
|
|
|
{"$match": {"_id": source_node_id}},
|
|
|
|
|
{
|
|
|
|
|
"$graphLookup": {
|
|
|
|
|
"from": self.collection.name,
|
|
|
|
|
"startWith": "$edges.target",
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "reachableNodes",
|
|
|
|
|
"depthField": "depth",
|
|
|
|
|
"maxDepth": 0, # means: do not follow beyond immediate edges
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"$project": {
|
|
|
|
|
"_id": 0,
|
|
|
|
|
"reachableNodes._id": 1, # only keep the _id from the subdocs
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
]
|
|
|
|
|
cursor = self.collection.aggregate(pipeline)
|
|
|
|
|
results = await cursor.to_list(None)
|
|
|
|
|
if not results:
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
# results[0]["reachableNodes"] are the immediate neighbors
|
|
|
|
|
reachable_ids = [d["_id"] for d in results[0].get("reachableNodes", [])]
|
|
|
|
|
return target_node_id in reachable_ids
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# DEGREES
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def node_degree(self, node_id: str) -> int:
|
|
|
|
|
"""
|
|
|
|
|
Returns the total number of edges connected to node_id (both inbound and outbound).
|
|
|
|
|
The easiest approach is typically two queries:
|
|
|
|
|
- count of edges array in node_id's doc
|
|
|
|
|
- count of how many other docs have node_id in their edges.target.
|
|
|
|
|
|
|
|
|
|
But we'll do a $graphLookup demonstration for inbound edges:
|
|
|
|
|
1) Outbound edges: direct from node's edges array
|
|
|
|
|
2) Inbound edges: we can do a special $graphLookup from all docs
|
|
|
|
|
or do an explicit match.
|
|
|
|
|
|
|
|
|
|
For demonstration, let's do this in two steps (with second step $graphLookup).
|
|
|
|
|
"""
|
|
|
|
|
# --- 1) Outbound edges (direct from doc) ---
|
|
|
|
|
doc = await self.collection.find_one({"_id": node_id}, {"edges": 1})
|
|
|
|
|
if not doc:
|
|
|
|
|
return 0
|
|
|
|
|
outbound_count = len(doc.get("edges", []))
|
|
|
|
|
|
|
|
|
|
# --- 2) Inbound edges:
|
|
|
|
|
# A simple way is: find all docs where "edges.target" == node_id.
|
|
|
|
|
# But let's do a $graphLookup from `node_id` in REVERSE.
|
|
|
|
|
# There's a trick to do "reverse" graphLookups: you'd store
|
|
|
|
|
# reversed edges or do a more advanced pipeline. Typically you'd do
|
|
|
|
|
# a direct match. We'll just do a direct match for inbound.
|
|
|
|
|
inbound_count_pipeline = [
|
|
|
|
|
{"$match": {"edges.target": node_id}},
|
|
|
|
|
{
|
|
|
|
|
"$project": {
|
|
|
|
|
"matchingEdgesCount": {
|
|
|
|
|
"$size": {
|
|
|
|
|
"$filter": {
|
|
|
|
|
"input": "$edges",
|
|
|
|
|
"as": "edge",
|
|
|
|
|
"cond": {"$eq": ["$$edge.target", node_id]},
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{"$group": {"_id": None, "totalInbound": {"$sum": "$matchingEdgesCount"}}},
|
|
|
|
|
]
|
|
|
|
|
inbound_cursor = self.collection.aggregate(inbound_count_pipeline)
|
|
|
|
|
inbound_result = await inbound_cursor.to_list(None)
|
|
|
|
|
inbound_count = inbound_result[0]["totalInbound"] if inbound_result else 0
|
|
|
|
|
|
|
|
|
|
return outbound_count + inbound_count
|
|
|
|
|
|
|
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
|
|
|
|
"""
|
|
|
|
|
If your graph can hold multiple edges from the same src to the same tgt
|
|
|
|
|
(e.g. different 'relation' values), you can sum them. If it's always
|
|
|
|
|
one edge, this is typically 1 or 0.
|
|
|
|
|
|
|
|
|
|
We'll do a single-hop $graphLookup from src_id,
|
|
|
|
|
then count how many edges reference tgt_id at depth=0.
|
|
|
|
|
"""
|
|
|
|
|
pipeline = [
|
|
|
|
|
{"$match": {"_id": src_id}},
|
|
|
|
|
{
|
|
|
|
|
"$graphLookup": {
|
|
|
|
|
"from": self.collection.name,
|
|
|
|
|
"startWith": "$edges.target",
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "neighbors",
|
|
|
|
|
"depthField": "depth",
|
|
|
|
|
"maxDepth": 0,
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{"$project": {"edges": 1, "neighbors._id": 1, "neighbors.type": 1}},
|
|
|
|
|
]
|
|
|
|
|
cursor = self.collection.aggregate(pipeline)
|
|
|
|
|
results = await cursor.to_list(None)
|
|
|
|
|
if not results:
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
# We can simply count how many edges in `results[0].edges` have target == tgt_id.
|
|
|
|
|
edges = results[0].get("edges", [])
|
|
|
|
|
count = sum(1 for e in edges if e.get("target") == tgt_id)
|
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# GETTERS
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
|
|
|
|
"""
|
|
|
|
|
Return the full node document (including "edges"), or None if missing.
|
|
|
|
|
"""
|
|
|
|
|
return await self.collection.find_one({"_id": node_id})
|
|
|
|
|
|
|
|
|
|
async def get_edge(
|
|
|
|
|
self, source_node_id: str, target_node_id: str
|
|
|
|
|
) -> Union[dict, None]:
|
|
|
|
|
"""
|
|
|
|
|
Return the first edge dict from source_node_id to target_node_id if it exists.
|
|
|
|
|
Uses a single-hop $graphLookup as demonstration, though a direct find is simpler.
|
|
|
|
|
"""
|
|
|
|
|
pipeline = [
|
|
|
|
|
{"$match": {"_id": source_node_id}},
|
|
|
|
|
{
|
|
|
|
|
"$graphLookup": {
|
|
|
|
|
"from": self.collection.name,
|
|
|
|
|
"startWith": "$edges.target",
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "neighbors",
|
|
|
|
|
"depthField": "depth",
|
|
|
|
|
"maxDepth": 0,
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{"$project": {"edges": 1}},
|
|
|
|
|
]
|
|
|
|
|
cursor = self.collection.aggregate(pipeline)
|
|
|
|
|
docs = await cursor.to_list(None)
|
|
|
|
|
if not docs:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
for e in docs[0].get("edges", []):
|
|
|
|
|
if e.get("target") == target_node_id:
|
|
|
|
|
return e
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
async def get_node_edges(
|
|
|
|
|
self, source_node_id: str
|
|
|
|
|
) -> Union[List[Tuple[str, str]], None]:
|
|
|
|
|
"""
|
|
|
|
|
Return a list of (target_id, relation) for direct edges from source_node_id.
|
|
|
|
|
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
|
|
|
|
|
"""
|
|
|
|
|
pipeline = [
|
|
|
|
|
{"$match": {"_id": source_node_id}},
|
|
|
|
|
{
|
|
|
|
|
"$graphLookup": {
|
|
|
|
|
"from": self.collection.name,
|
|
|
|
|
"startWith": "$edges.target",
|
|
|
|
|
"connectFromField": "edges.target",
|
|
|
|
|
"connectToField": "_id",
|
|
|
|
|
"as": "neighbors",
|
|
|
|
|
"depthField": "depth",
|
|
|
|
|
"maxDepth": 0,
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
{"$project": {"_id": 0, "edges": 1}},
|
|
|
|
|
]
|
|
|
|
|
cursor = self.collection.aggregate(pipeline)
|
|
|
|
|
result = await cursor.to_list(None)
|
|
|
|
|
if not result:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
edges = result[0].get("edges", [])
|
|
|
|
|
return [(e["target"], e["relation"]) for e in edges]
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# UPSERTS
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def upsert_node(self, node_id: str, node_data: dict):
|
|
|
|
|
"""
|
|
|
|
|
Insert or update a node document. If new, create an empty edges array.
|
|
|
|
|
"""
|
|
|
|
|
# By default, preserve existing 'edges'.
|
|
|
|
|
# We'll only set 'edges' to [] on insert (no overwrite).
|
|
|
|
|
update_doc = {"$set": {**node_data}, "$setOnInsert": {"edges": []}}
|
|
|
|
|
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
|
|
|
|
|
|
|
|
|
|
async def upsert_edge(
|
|
|
|
|
self, source_node_id: str, target_node_id: str, edge_data: dict
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
|
|
|
|
|
If an edge with the same target exists, we remove it and re-insert with updated data.
|
|
|
|
|
"""
|
|
|
|
|
# Ensure source node exists
|
|
|
|
|
await self.upsert_node(source_node_id, {})
|
|
|
|
|
|
|
|
|
|
# Remove existing edge (if any)
|
|
|
|
|
await self.collection.update_one(
|
|
|
|
|
{"_id": source_node_id}, {"$pull": {"edges": {"target": target_node_id}}}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Insert new edge
|
|
|
|
|
new_edge = {"target": target_node_id}
|
|
|
|
|
new_edge.update(edge_data)
|
|
|
|
|
await self.collection.update_one(
|
|
|
|
|
{"_id": source_node_id}, {"$push": {"edges": new_edge}}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# DELETION
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def delete_node(self, node_id: str):
|
|
|
|
|
"""
|
|
|
|
|
1) Remove node’s doc entirely.
|
|
|
|
|
2) Remove inbound edges from any doc that references node_id.
|
|
|
|
|
"""
|
|
|
|
|
# Remove inbound edges from all other docs
|
|
|
|
|
await self.collection.update_many({}, {"$pull": {"edges": {"target": node_id}}})
|
|
|
|
|
|
|
|
|
|
# Remove the node doc
|
|
|
|
|
await self.collection.delete_one({"_id": node_id})
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
# EMBEDDINGS (NOT IMPLEMENTED)
|
|
|
|
|
# -------------------------------------------------------------------------
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
async def embed_nodes(self, algorithm: str) -> Tuple[np.ndarray, List[str]]:
|
|
|
|
|
"""
|
|
|
|
|
Placeholder for demonstration, raises NotImplementedError.
|
|
|
|
|
"""
|
|
|
|
|
raise NotImplementedError("Node embedding is not used in lightrag.")
|