mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-06 16:41:18 +00:00
49 lines
1.2 KiB
Python
49 lines
1.2 KiB
Python
![]() |
"""
|
|||
|
LightRAG meets Amazon Bedrock ⛰️
|
|||
|
"""
|
|||
|
|
|||
|
import os
|
|||
|
|
|||
|
from lightrag import LightRAG, QueryParam
|
|||
|
from lightrag.llm import bedrock_complete, bedrock_embedding
|
|||
|
from lightrag.utils import EmbeddingFunc
|
|||
|
|
|||
|
WORKING_DIR = "./dickens"
|
|||
|
|
|||
|
if not os.path.exists(WORKING_DIR):
|
|||
|
os.mkdir(WORKING_DIR)
|
|||
|
|
|||
|
rag = LightRAG(
|
|||
|
working_dir=WORKING_DIR,
|
|||
|
llm_model_func=bedrock_complete,
|
|||
|
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
|
|||
|
node2vec_params = {
|
|||
|
'dimensions': 1024,
|
|||
|
'num_walks': 10,
|
|||
|
'walk_length': 40,
|
|||
|
'window_size': 2,
|
|||
|
'iterations': 3,
|
|||
|
'random_seed': 3
|
|||
|
},
|
|||
|
embedding_func=EmbeddingFunc(
|
|||
|
embedding_dim=1024,
|
|||
|
max_token_size=8192,
|
|||
|
func=lambda texts: bedrock_embedding(texts)
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
with open("./book.txt") as f:
|
|||
|
rag.insert(f.read())
|
|||
|
|
|||
|
# Naive search
|
|||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
|||
|
|
|||
|
# Local search
|
|||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
|||
|
|
|||
|
# Global search
|
|||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
|||
|
|
|||
|
# Hybrid search
|
|||
|
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|