LightRAG/examples/lightrag_bedrock_demo.py

49 lines
1.2 KiB
Python
Raw Normal View History

"""
LightRAG meets Amazon Bedrock
"""
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import bedrock_complete, bedrock_embedding
from lightrag.utils import EmbeddingFunc
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=bedrock_complete,
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
node2vec_params = {
'dimensions': 1024,
'num_walks': 10,
'walk_length': 40,
'window_size': 2,
'iterations': 3,
'random_seed': 3
},
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: bedrock_embedding(texts)
)
)
with open("./book.txt") as f:
rag.insert(f.read())
# Naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))