LightRAG/lightrag/lightrag.py

1487 lines
58 KiB
Python
Raw Normal View History

2025-02-14 22:50:49 +01:00
from __future__ import annotations
2024-10-10 15:02:30 +08:00
import asyncio
import os
import configparser
2024-10-10 15:02:30 +08:00
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
2025-02-20 13:05:35 +01:00
from typing import Any, AsyncIterator, Callable, Iterator, cast, final
2025-02-20 12:54:52 +01:00
2025-02-20 13:44:17 +01:00
from lightrag.kg import (
STORAGE_ENV_REQUIREMENTS,
STORAGES,
verify_storage_implementation,
)
2025-02-20 13:21:41 +01:00
2025-02-09 19:21:49 +01:00
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
QueryParam,
StorageNameSpace,
StoragesStatus,
2025-02-09 19:21:49 +01:00
)
from .namespace import NameSpace, make_namespace
2024-10-10 15:02:30 +08:00
from .operate import (
chunking_by_token_size,
2025-02-09 11:24:08 +01:00
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
2024-10-10 15:02:30 +08:00
)
2025-02-09 19:21:49 +01:00
from .prompt import GRAPH_FIELD_SEP
2024-10-10 15:02:30 +08:00
from .utils import (
EmbeddingFunc,
2025-02-20 13:18:17 +01:00
always_get_an_event_loop,
2024-10-10 15:02:30 +08:00
compute_mdhash_id,
convert_response_to_json,
2025-02-20 13:18:17 +01:00
lazy_external_import,
2025-02-09 19:21:49 +01:00
limit_async_func_call,
2024-10-10 15:02:30 +08:00
logger,
set_logger,
2025-02-17 15:12:35 +01:00
encode_string_by_tiktoken,
2024-10-10 15:02:30 +08:00
)
2025-02-09 11:24:08 +01:00
2025-02-20 13:39:46 +01:00
# TODO: TO REMOVE @Yannick
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
2025-02-20 13:09:33 +01:00
2025-02-20 13:05:35 +01:00
@final
2024-10-10 15:02:30 +08:00
@dataclass
class LightRAG:
2025-02-09 00:23:55 +01:00
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
2025-02-20 13:13:38 +01:00
# Directory
# ---
2024-10-10 15:02:30 +08:00
working_dir: str = field(
2025-02-20 13:05:59 +01:00
default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
2024-10-10 15:02:30 +08:00
)
2025-02-09 00:23:55 +01:00
"""Directory where cache and temporary files are stored."""
2025-02-20 13:13:38 +01:00
# Storage
# ---
2025-02-09 00:23:55 +01:00
2024-11-12 13:32:40 +08:00
kv_storage: str = field(default="JsonKVStorage")
2025-02-09 00:23:55 +01:00
"""Storage backend for key-value data."""
vector_storage: str = field(default="NanoVectorDBStorage")
2025-02-09 00:23:55 +01:00
"""Storage backend for vector embeddings."""
graph_storage: str = field(default="NetworkXStorage")
2025-02-09 00:23:55 +01:00
"""Storage backend for knowledge graphs."""
doc_status_storage: str = field(default="JsonDocStatusStorage")
"""Storage type for tracking document processing statuses."""
2025-02-09 00:23:55 +01:00
# Logging
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:05:59 +01:00
log_level: int = field(default=logger.level)
2025-02-09 00:23:55 +01:00
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
2025-02-20 13:27:55 +01:00
log_file_path: str = field(default=os.path.join(os.getcwd(), "lightrag.log"))
"""Log file path."""
2025-02-20 13:13:38 +01:00
# Entity extraction
# ---
entity_extract_max_gleaning: int = field(default=1)
"""Maximum number of entity extraction attempts for ambiguous content."""
entity_summary_to_max_tokens: int = field(
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
)
2025-02-09 00:23:55 +01:00
# Text chunking
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:05:59 +01:00
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
2025-02-09 00:23:55 +01:00
"""Maximum number of tokens per text chunk when splitting documents."""
2025-02-20 13:09:33 +01:00
chunk_overlap_token_size: int = field(
default=int(os.getenv("CHUNK_OVERLAP_SIZE", 100))
)
2025-02-09 00:23:55 +01:00
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
2025-02-20 13:05:59 +01:00
tiktoken_model_name: str = field(default="gpt-4o-mini")
2025-02-09 00:23:55 +01:00
"""Model name used for tokenization when chunking text."""
2024-10-10 15:02:30 +08:00
2025-02-09 00:23:55 +01:00
"""Maximum number of tokens used for summarizing extracted entities."""
2024-10-10 15:02:30 +08:00
2025-02-20 13:13:38 +01:00
chunking_func: Callable[
[
str,
str | None,
bool,
int,
int,
str,
],
list[dict[str, Any]],
] = field(default_factory=lambda: chunking_by_token_size)
"""
Custom chunking function for splitting text into chunks before processing.
The function should take the following parameters:
- `content`: The text to be split into chunks.
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
- `split_by_character_only`: If True, the text is split only on the specified character.
- `chunk_token_size`: The maximum number of tokens per chunk.
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
- `tiktoken_model_name`: The name of the tiktoken model to use for tokenization.
The function should return a list of dictionaries, where each dictionary contains the following keys:
- `tokens`: The number of tokens in the chunk.
- `content`: The text content of the chunk.
Defaults to `chunking_by_token_size` if not specified.
"""
2025-02-09 00:23:55 +01:00
# Node embedding
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:09:33 +01:00
node_embedding_algorithm: str = field(default="node2vec")
2025-02-09 00:23:55 +01:00
"""Algorithm used for node embedding in knowledge graphs."""
node2vec_params: dict[str, int] = field(
2024-10-10 15:02:30 +08:00
default_factory=lambda: {
"dimensions": 1536,
"num_walks": 10,
"walk_length": 40,
"window_size": 2,
"iterations": 3,
"random_seed": 3,
}
)
2025-02-09 00:23:55 +01:00
"""Configuration for the node2vec embedding algorithm:
- dimensions: Number of dimensions for embeddings.
- num_walks: Number of random walks per node.
- walk_length: Number of steps per random walk.
- window_size: Context window size for training.
- iterations: Number of iterations for training.
- random_seed: Seed value for reproducibility.
"""
2025-02-20 13:13:38 +01:00
# Embedding
# ---
2025-02-20 13:06:16 +01:00
embedding_func: EmbeddingFunc | None = field(default=None)
2025-02-09 00:23:55 +01:00
"""Function for computing text embeddings. Must be set before use."""
2024-10-10 15:02:30 +08:00
2025-02-20 13:06:16 +01:00
embedding_batch_num: int = field(default=32)
2025-02-09 00:23:55 +01:00
"""Batch size for embedding computations."""
2025-02-20 13:06:16 +01:00
embedding_func_max_async: int = field(default=16)
2025-02-09 00:23:55 +01:00
"""Maximum number of concurrent embedding function calls."""
2025-02-20 13:13:38 +01:00
embedding_cache_config: dict[str, Any] = field(
2025-02-20 14:04:59 +01:00
default_factory= lambda: {
2025-02-20 13:13:38 +01:00
"enabled": False,
"similarity_threshold": 0.95,
"use_llm_check": False,
}
)
"""Configuration for embedding cache.
- enabled: If True, enables caching to avoid redundant computations.
- similarity_threshold: Minimum similarity score to use cached embeddings.
- use_llm_check: If True, validates cached embeddings using an LLM.
"""
2025-02-09 00:23:55 +01:00
# LLM Configuration
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:06:16 +01:00
llm_model_func: Callable[..., object] | None = field(default=None)
2025-02-09 00:23:55 +01:00
"""Function for interacting with the large language model (LLM). Must be set before use."""
2025-02-20 13:06:16 +01:00
llm_model_name: str = field(default="gpt-4o-mini")
2025-02-09 00:23:55 +01:00
"""Name of the LLM model used for generating responses."""
2024-10-10 15:02:30 +08:00
2025-02-20 13:06:16 +01:00
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
2025-02-09 00:23:55 +01:00
"""Maximum number of tokens allowed per LLM response."""
2025-02-20 13:06:16 +01:00
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 16)))
2025-02-09 00:23:55 +01:00
"""Maximum number of concurrent LLM calls."""
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional keyword arguments passed to the LLM model function."""
# Storage
2025-02-20 13:13:38 +01:00
# ---
2025-02-09 00:23:55 +01:00
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional parameters for vector database storage."""
2024-10-10 15:02:30 +08:00
namespace_prefix: str = field(default="")
2025-02-09 00:23:55 +01:00
"""Prefix for namespacing stored data across different environments."""
2024-11-12 13:32:40 +08:00
2025-02-20 13:06:34 +01:00
enable_llm_cache: bool = field(default=True)
2025-02-09 00:23:55 +01:00
"""Enables caching for LLM responses to avoid redundant computations."""
2025-02-20 13:06:34 +01:00
enable_llm_cache_for_entity_extract: bool = field(default=True)
2025-02-09 00:23:55 +01:00
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
# Extensions
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:06:34 +01:00
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
2025-02-20 12:57:25 +01:00
"""Maximum number of parallel insert operations."""
2025-02-20 13:09:33 +01:00
2025-02-09 00:23:55 +01:00
addon_params: dict[str, Any] = field(default_factory=dict)
2024-10-10 15:02:30 +08:00
# Storages Management
2025-02-20 13:13:38 +01:00
# ---
2025-02-20 13:06:34 +01:00
auto_manage_storages_states: bool = field(default=True)
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
2025-02-20 13:13:38 +01:00
# Storages Management
# ---
2025-02-20 13:09:33 +01:00
convert_response_to_json_func: Callable[[str], dict[str, Any]] = field(
default_factory=lambda: convert_response_to_json
2025-02-09 13:18:47 +01:00
)
2025-02-20 13:09:33 +01:00
"""
Custom function for converting LLM responses to JSON format.
The default function is :func:`.utils.convert_response_to_json`.
"""
2024-10-10 15:02:30 +08:00
2025-02-20 13:44:17 +01:00
cosine_better_than_threshold: float = field(
default=float(os.getenv("COSINE_THRESHOLD", 0.2))
)
2025-02-20 13:30:30 +01:00
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
def __post_init__(self):
2025-02-20 13:30:30 +01:00
logger.setLevel(self.log_level)
2025-02-20 13:27:55 +01:00
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
set_logger(self.log_file_path)
2024-10-10 15:02:30 +08:00
logger.info(f"Logger initialized for working directory: {self.working_dir}")
2025-02-20 13:30:30 +01:00
2025-01-16 12:52:37 +08:00
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
# Verify storage implementation compatibility and environment variables
storage_configs = [
("KV_STORAGE", self.kv_storage),
("VECTOR_STORAGE", self.vector_storage),
("GRAPH_STORAGE", self.graph_storage),
("DOC_STATUS_STORAGE", self.doc_status_storage),
]
for storage_type, storage_name in storage_configs:
# Verify storage implementation compatibility
2025-02-20 13:39:46 +01:00
verify_storage_implementation(storage_type, storage_name)
# Check environment variables
# self.check_storage_env_vars(storage_name)
# Ensure vector_db_storage_cls_kwargs has required fields
self.vector_db_storage_cls_kwargs = {
2025-02-20 13:44:17 +01:00
"cosine_better_than_threshold": self.cosine_better_than_threshold,
2025-02-13 04:12:00 +08:00
**self.vector_db_storage_cls_kwargs,
}
# Show config
2025-01-16 12:58:15 +08:00
global_config = asdict(self)
2025-01-16 12:52:37 +08:00
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
2024-10-10 15:02:30 +08:00
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
2025-01-16 12:52:37 +08:00
# Init LLM
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)( # type: ignore
2025-01-16 12:52:37 +08:00
self.embedding_func
)
2025-01-16 12:52:37 +08:00
# Initialize all storages
self.key_string_value_json_storage_cls: type[BaseKVStorage] = (
2025-01-16 12:58:15 +08:00
self._get_storage_class(self.kv_storage)
) # type: ignore
self.vector_db_storage_cls: type[BaseVectorStorage] = self._get_storage_class(
2024-11-12 13:32:40 +08:00
self.vector_storage
) # type: ignore
self.graph_storage_cls: type[BaseGraphStorage] = self._get_storage_class(
2024-11-12 13:32:40 +08:00
self.graph_storage
) # type: ignore
self.key_string_value_json_storage_cls = partial( # type: ignore
2025-01-16 12:58:15 +08:00
self.key_string_value_json_storage_cls, global_config=global_config
2025-01-16 12:52:37 +08:00
)
self.vector_db_storage_cls = partial( # type: ignore
2025-01-16 12:58:15 +08:00
self.vector_db_storage_cls, global_config=global_config
2024-11-12 13:32:40 +08:00
)
self.graph_storage_cls = partial( # type: ignore
2025-01-16 12:58:15 +08:00
self.graph_storage_cls, global_config=global_config
2025-01-16 12:52:37 +08:00
)
2025-02-11 10:17:51 +08:00
# Initialize document status storage
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
self.llm_response_cache: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
2025-02-11 10:17:51 +08:00
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
embedding_func=self.embedding_func,
)
2024-10-15 19:40:08 +08:00
self.full_docs: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS
),
2024-11-12 13:32:40 +08:00
embedding_func=self.embedding_func,
)
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
),
2024-11-12 13:32:40 +08:00
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION
),
2024-12-03 16:04:58 +08:00
embedding_func=self.embedding_func,
)
self.entities_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES
),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
2024-10-10 15:02:30 +08:00
)
self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS
),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
2024-10-10 15:02:30 +08:00
)
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS
),
embedding_func=self.embedding_func,
2024-10-10 15:02:30 +08:00
)
# Initialize document status storage
self.doc_status: DocStatusStorage = self.doc_status_storage_cls(
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
global_config=global_config,
embedding_func=None,
)
2025-01-16 12:58:15 +08:00
if self.llm_response_cache and hasattr(
self.llm_response_cache, "global_config"
):
2025-01-16 12:52:37 +08:00
hashing_kv = self.llm_response_cache
else:
hashing_kv = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
embedding_func=self.embedding_func,
2025-01-16 12:58:15 +08:00
)
2025-02-14 23:33:59 +01:00
2024-10-10 15:02:30 +08:00
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
2024-10-28 17:05:38 +02:00
partial(
self.llm_model_func, # type: ignore
2025-01-16 12:52:37 +08:00
hashing_kv=hashing_kv,
2024-10-28 17:05:38 +02:00
**self.llm_model_kwargs,
)
2024-10-10 15:02:30 +08:00
)
2024-11-06 11:18:14 -05:00
2025-02-20 13:30:30 +01:00
self._storages_status = StoragesStatus.CREATED
# Initialize storages
if self.auto_manage_storages_states:
loop = always_get_an_event_loop()
loop.run_until_complete(self.initialize_storages())
def __del__(self):
# Finalize storages
if self.auto_manage_storages_states:
loop = always_get_an_event_loop()
loop.run_until_complete(self.finalize_storages())
async def initialize_storages(self):
"""Asynchronously initialize the storages"""
2025-02-20 13:30:30 +01:00
if self._storages_status == StoragesStatus.CREATED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.initialize())
await asyncio.gather(*tasks)
2025-02-20 13:30:30 +01:00
self._storages_status = StoragesStatus.INITIALIZED
logger.debug("Initialized Storages")
async def finalize_storages(self):
"""Asynchronously finalize the storages"""
2025-02-20 13:30:30 +01:00
if self._storages_status == StoragesStatus.INITIALIZED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.finalize())
await asyncio.gather(*tasks)
2025-02-20 13:30:30 +01:00
self._storages_status = StoragesStatus.FINALIZED
logger.debug("Finalized Storages")
2025-02-14 22:50:49 +01:00
def _get_storage_class(self, storage_name: str) -> Callable[..., Any]:
2025-01-16 12:52:37 +08:00
import_path = STORAGES[storage_name]
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
2025-01-16 12:58:15 +08:00
def insert(
2025-02-09 13:18:47 +01:00
self,
2025-02-14 22:50:49 +01:00
input: str | list[str],
2025-02-09 11:29:05 +01:00
split_by_character: str | None = None,
split_by_character_only: bool = False,
2025-02-18 21:16:52 +01:00
) -> None:
2025-02-09 11:29:05 +01:00
"""Sync Insert documents with checkpoint support
Args:
2025-02-14 22:50:49 +01:00
input: Single document string or list of document strings
2025-02-09 11:29:05 +01:00
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
2025-02-09 13:18:47 +01:00
"""
2024-10-10 15:02:30 +08:00
loop = always_get_an_event_loop()
2025-02-18 21:16:52 +01:00
loop.run_until_complete(
2025-02-14 22:50:49 +01:00
self.ainsert(input, split_by_character, split_by_character_only)
2025-01-07 16:26:12 +08:00
)
2024-10-10 15:02:30 +08:00
async def ainsert(
2025-02-09 11:24:08 +01:00
self,
2025-02-14 22:50:49 +01:00
input: str | list[str],
2025-02-09 11:24:08 +01:00
split_by_character: str | None = None,
split_by_character_only: bool = False,
2025-02-18 21:16:52 +01:00
) -> None:
2025-02-09 11:29:05 +01:00
"""Async Insert documents with checkpoint support
Args:
2025-02-14 22:50:49 +01:00
input: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
"""
2025-02-14 22:50:49 +01:00
await self.apipeline_enqueue_documents(input)
2025-02-09 15:24:52 +01:00
await self.apipeline_process_enqueue_documents(
split_by_character, split_by_character_only
)
2025-02-18 21:16:52 +01:00
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]) -> None:
2025-01-07 20:57:39 +05:30
loop = always_get_an_event_loop()
2025-02-18 21:16:52 +01:00
loop.run_until_complete(self.ainsert_custom_chunks(full_text, text_chunks))
2025-01-07 20:57:39 +05:30
2025-02-18 21:16:52 +01:00
async def ainsert_custom_chunks(
self, full_text: str, text_chunks: list[str]
) -> None:
2025-01-07 20:57:39 +05:30
update_storage = False
try:
doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
new_docs = {doc_key: {"content": full_text.strip()}}
2025-01-07 20:57:39 +05:30
2025-02-09 19:56:12 +01:00
_add_doc_keys = await self.full_docs.filter_keys(set(doc_key))
2025-01-07 20:57:39 +05:30
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("This document is already in the storage.")
return
update_storage = True
2025-02-19 22:07:25 +01:00
logger.info(f"Inserting {len(new_docs)} docs")
2025-01-07 20:57:39 +05:30
2025-02-09 19:56:12 +01:00
inserting_chunks: dict[str, Any] = {}
2025-01-07 20:57:39 +05:30
for chunk_text in text_chunks:
chunk_text_stripped = chunk_text.strip()
chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
2025-01-07 20:57:39 +05:30
inserting_chunks[chunk_key] = {
"content": chunk_text_stripped,
"full_doc_id": doc_key,
}
2025-02-09 19:56:12 +01:00
doc_ids = set(inserting_chunks.keys())
add_chunk_keys = await self.text_chunks.filter_keys(doc_ids)
2025-01-07 20:57:39 +05:30
inserting_chunks = {
2025-02-09 19:56:12 +01:00
k: v for k, v in inserting_chunks.items() if k in add_chunk_keys
2025-01-07 20:57:39 +05:30
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage.")
return
tasks = [
self.chunks_vdb.upsert(inserting_chunks),
self._process_entity_relation_graph(inserting_chunks),
self.full_docs.upsert(new_docs),
self.text_chunks.upsert(inserting_chunks),
]
await asyncio.gather(*tasks)
2025-01-07 20:57:39 +05:30
finally:
if update_storage:
await self._insert_done()
2025-02-18 21:16:52 +01:00
async def apipeline_enqueue_documents(self, input: str | list[str]) -> None:
2025-02-09 14:39:32 +01:00
"""
Pipeline for Processing Documents
2025-02-09 15:24:52 +01:00
2025-02-09 11:30:54 +01:00
1. Remove duplicate contents from the list
2. Generate document IDs and initial status
2025-02-09 14:39:32 +01:00
3. Filter out already processed documents
2025-02-09 15:24:52 +01:00
4. Enqueue document in status
"""
2025-02-14 22:50:49 +01:00
if isinstance(input, str):
input = [input]
2025-01-16 12:52:37 +08:00
# 1. Remove duplicate contents from the list
2025-02-14 22:50:49 +01:00
unique_contents = list(set(doc.strip() for doc in input))
2025-01-16 12:52:37 +08:00
# 2. Generate document IDs and initial status
2025-02-09 11:10:46 +01:00
new_docs: dict[str, Any] = {
2025-01-16 12:52:37 +08:00
compute_mdhash_id(content, prefix="doc-"): {
"content": content,
"content_summary": self._get_content_summary(content),
"content_length": len(content),
2025-02-17 18:26:07 +01:00
"status": DocStatus.PENDING,
2025-01-16 12:52:37 +08:00
"created_at": datetime.now().isoformat(),
2025-02-09 11:10:46 +01:00
"updated_at": datetime.now().isoformat(),
2025-01-16 12:52:37 +08:00
}
for content in unique_contents
}
2025-01-16 12:58:15 +08:00
# 3. Filter out already processed documents
2025-02-09 14:55:52 +01:00
# Get docs ids
2025-02-09 19:24:41 +01:00
all_new_doc_ids = set(new_docs.keys())
# Exclude IDs of documents that are already in progress
2025-02-09 21:17:09 +01:00
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
2025-02-09 19:24:41 +01:00
# Filter new_docs to only include documents with unique IDs
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
2025-01-16 12:52:37 +08:00
if not new_docs:
2025-02-11 13:28:18 +08:00
logger.info("No new unique documents were found.")
2025-02-09 11:10:46 +01:00
return
2025-01-16 12:52:37 +08:00
2025-02-09 14:32:48 +01:00
# 4. Store status document
2025-02-09 13:18:47 +01:00
await self.doc_status.upsert(new_docs)
2025-01-16 12:52:37 +08:00
logger.info(f"Stored {len(new_docs)} new unique documents")
2025-01-16 12:58:15 +08:00
2025-02-09 14:32:48 +01:00
async def apipeline_process_enqueue_documents(
2025-02-09 11:24:08 +01:00
self,
split_by_character: str | None = None,
split_by_character_only: bool = False,
) -> None:
2025-02-09 11:30:54 +01:00
"""
2025-02-09 14:32:48 +01:00
Process pending documents by splitting them into chunks, processing
2025-02-09 14:36:49 +01:00
each chunk for entity and relation extraction, and updating the
2025-02-09 14:32:48 +01:00
document status.
2025-02-09 14:36:49 +01:00
2025-02-11 13:28:18 +08:00
1. Get all pending, failed, and abnormally terminated processing documents.
2025-02-09 14:32:48 +01:00
2. Split document content into chunks
3. Process each chunk for entity and relation extraction
4. Update the document status
2025-02-09 14:36:49 +01:00
"""
2025-02-11 13:28:18 +08:00
# 1. Get all pending, failed, and abnormally terminated processing documents.
2025-02-19 23:45:51 +01:00
# Run the asynchronous status retrievals in parallel using asyncio.gather
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
2025-02-09 14:36:49 +01:00
2025-02-19 23:45:51 +01:00
to_process_docs: dict[str, DocProcessingStatus] = {}
2025-02-11 13:28:18 +08:00
to_process_docs.update(processing_docs)
2025-02-09 21:03:14 +01:00
to_process_docs.update(failed_docs)
2025-02-19 23:45:51 +01:00
to_process_docs.update(pending_docs)
2025-02-09 15:25:58 +01:00
2025-02-09 15:24:52 +01:00
if not to_process_docs:
2025-02-09 11:10:46 +01:00
logger.info("All documents have been processed or are duplicates")
2025-02-09 15:25:58 +01:00
return
2025-02-09 14:36:49 +01:00
2025-01-16 12:52:37 +08:00
# 2. split docs into chunks, insert chunks, update doc status
2025-02-09 20:18:38 +01:00
docs_batches = [
2025-02-20 12:57:25 +01:00
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
2025-02-09 13:18:47 +01:00
]
2025-02-09 14:36:49 +01:00
2025-02-09 20:18:38 +01:00
logger.info(f"Number of batches to process: {len(docs_batches)}.")
2025-02-19 23:53:25 +01:00
batches: list[Any] = []
2025-02-09 20:41:18 +01:00
# 3. iterate over batches
2025-02-09 20:18:38 +01:00
for batch_idx, docs_batch in enumerate(docs_batches):
2025-02-09 14:36:49 +01:00
2025-02-19 23:53:25 +01:00
async def batch(
batch_idx: int,
docs_batch: list[tuple[str, DocProcessingStatus]],
size_batch: int,
) -> None:
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
# 4. iterate over batch
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Update status in processing
doc_status_id = compute_mdhash_id(status_doc.content, prefix="doc-")
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
}
for dp in self.chunking_func(
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
self.tiktoken_model_name,
)
}
# Process document (text chunks and full docs) in parallel
tasks = [
2025-02-20 00:09:46 +01:00
self.doc_status.upsert(
{
doc_status_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
}
}
),
2025-02-19 23:53:25 +01:00
self.chunks_vdb.upsert(chunks),
self._process_entity_relation_graph(chunks),
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
),
self.text_chunks.upsert(chunks),
2025-02-20 00:09:46 +01:00
]
try:
await asyncio.gather(*tasks)
await self.doc_status.upsert(
2025-02-19 23:53:25 +01:00
{
doc_status_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
2025-02-20 00:09:46 +01:00
)
2025-02-19 23:53:25 +01:00
except Exception as e:
logger.error(f"Failed to process document {doc_id}: {str(e)}")
await self.doc_status.upsert(
{
doc_status_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
continue
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
await asyncio.gather(*batches)
await self._insert_done()
2025-01-16 12:52:37 +08:00
2025-02-09 13:03:50 +01:00
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
2025-02-09 13:18:47 +01:00
try:
new_kg = await extract_entities(
chunk,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
)
if new_kg is None:
2025-02-09 20:41:18 +01:00
logger.info("No new entities or relationships extracted.")
2025-02-09 13:18:47 +01:00
else:
2025-02-20 14:12:19 +01:00
logger.info("New entities or relationships extracted.")
self.chunk_entity_relation_graph = new_kg
2025-02-09 13:18:47 +01:00
except Exception as e:
logger.error("Failed to extract entities and relationships")
raise e
2025-02-18 21:16:52 +01:00
async def _insert_done(self) -> None:
tasks = [
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
self.full_docs,
self.text_chunks,
self.llm_response_cache,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
]
if storage_inst is not None
]
2024-10-10 15:02:30 +08:00
await asyncio.gather(*tasks)
2025-02-19 22:07:25 +01:00
logger.info("All Insert done")
2024-10-10 15:02:30 +08:00
2025-02-18 21:16:52 +01:00
def insert_custom_kg(self, custom_kg: dict[str, Any]) -> None:
2024-11-25 18:06:19 +08:00
loop = always_get_an_event_loop()
2025-02-18 21:16:52 +01:00
loop.run_until_complete(self.ainsert_custom_kg(custom_kg))
2024-11-25 18:06:19 +08:00
2025-02-18 21:16:52 +01:00
async def ainsert_custom_kg(self, custom_kg: dict[str, Any]) -> None:
2024-11-25 18:06:19 +08:00
update_storage = False
try:
2024-12-04 19:44:04 +08:00
# Insert chunks into vector storage
all_chunks_data: dict[str, dict[str, str]] = {}
chunk_to_source_map: dict[str, str] = {}
for chunk_data in custom_kg.get("chunks", {}):
2025-02-17 15:25:50 +01:00
chunk_content = chunk_data["content"].strip()
2024-12-04 19:44:04 +08:00
source_id = chunk_data["source_id"]
2025-02-19 10:28:25 +01:00
tokens = len(
encode_string_by_tiktoken(
chunk_content, model_name=self.tiktoken_model_name
)
)
chunk_order_index = (
0
if "chunk_order_index" not in chunk_data.keys()
else chunk_data["chunk_order_index"]
)
2025-02-17 15:25:50 +01:00
chunk_id = compute_mdhash_id(chunk_content, prefix="chunk-")
2024-12-04 19:44:04 +08:00
2025-02-17 15:12:35 +01:00
chunk_entry = {
2025-02-17 15:25:50 +01:00
"content": chunk_content,
2025-02-17 15:12:35 +01:00
"source_id": source_id,
"tokens": tokens,
"chunk_order_index": chunk_order_index,
2025-02-17 15:12:35 +01:00
"full_doc_id": source_id,
2025-02-17 15:25:50 +01:00
"status": DocStatus.PROCESSED,
2025-02-17 15:12:35 +01:00
}
2024-12-04 19:44:04 +08:00
all_chunks_data[chunk_id] = chunk_entry
chunk_to_source_map[source_id] = chunk_id
update_storage = True
if all_chunks_data:
2024-12-04 19:44:04 +08:00
await self.chunks_vdb.upsert(all_chunks_data)
if all_chunks_data:
2024-12-04 19:44:04 +08:00
await self.text_chunks.upsert(all_chunks_data)
2024-11-25 18:06:19 +08:00
# Insert entities into knowledge graph
all_entities_data: list[dict[str, str]] = []
2024-11-25 18:06:19 +08:00
for entity_data in custom_kg.get("entities", []):
entity_name = f'"{entity_data["entity_name"].upper()}"'
entity_type = entity_data.get("entity_type", "UNKNOWN")
description = entity_data.get("description", "No description provided")
2024-12-04 19:44:04 +08:00
# source_id = entity_data["source_id"]
source_chunk_id = entity_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping."
)
2024-11-25 18:06:19 +08:00
# Prepare node data
node_data: dict[str, str] = {
2024-11-25 18:06:19 +08:00
"entity_type": entity_type,
"description": description,
"source_id": source_id,
}
# Insert node data into the knowledge graph
await self.chunk_entity_relation_graph.upsert_node(
entity_name, node_data=node_data
)
node_data["entity_name"] = entity_name
all_entities_data.append(node_data)
update_storage = True
# Insert relationships into knowledge graph
all_relationships_data: list[dict[str, str]] = []
2024-11-25 18:06:19 +08:00
for relationship_data in custom_kg.get("relationships", []):
src_id = f'"{relationship_data["src_id"].upper()}"'
tgt_id = f'"{relationship_data["tgt_id"].upper()}"'
description = relationship_data["description"]
keywords = relationship_data["keywords"]
weight = relationship_data.get("weight", 1.0)
2024-12-04 19:44:04 +08:00
# source_id = relationship_data["source_id"]
source_chunk_id = relationship_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping."
)
2024-11-25 18:06:19 +08:00
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
2025-01-07 16:26:12 +08:00
await self.chunk_entity_relation_graph.has_node(need_insert_id)
2024-11-25 18:06:19 +08:00
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
node_data={
"source_id": source_id,
"description": "UNKNOWN",
"entity_type": "UNKNOWN",
},
)
# Insert edge into the knowledge graph
await self.chunk_entity_relation_graph.upsert_edge(
src_id,
tgt_id,
edge_data={
"weight": weight,
"description": description,
"keywords": keywords,
"source_id": source_id,
},
)
edge_data: dict[str, str] = {
2024-11-25 18:06:19 +08:00
"src_id": src_id,
"tgt_id": tgt_id,
"description": description,
"keywords": keywords,
}
all_relationships_data.append(edge_data)
update_storage = True
# Insert entities into vector storage if needed
data_for_vdb = {
2025-02-14 23:33:59 +01:00
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + dp["description"],
"entity_name": dp["entity_name"],
2024-11-25 18:06:19 +08:00
}
2025-02-14 23:33:59 +01:00
for dp in all_entities_data
}
await self.entities_vdb.upsert(data_for_vdb)
2024-11-25 18:06:19 +08:00
# Insert relationships into vector storage if needed
data_for_vdb = {
2025-02-14 23:33:59 +01:00
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
+ dp["src_id"]
+ dp["tgt_id"]
+ dp["description"],
2024-11-25 18:06:19 +08:00
}
2025-02-14 23:33:59 +01:00
for dp in all_relationships_data
}
await self.relationships_vdb.upsert(data_for_vdb)
2025-02-14 23:33:59 +01:00
2024-11-25 18:06:19 +08:00
finally:
if update_storage:
await self._insert_done()
def query(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
2025-02-14 23:42:52 +01:00
) -> str | Iterator[str]:
"""
Perform a sync query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
2025-02-14 23:33:59 +01:00
"""
2024-10-10 15:02:30 +08:00
loop = always_get_an_event_loop()
2025-02-14 23:52:05 +01:00
return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore
2025-01-27 10:32:22 +05:30
async def aquery(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
2025-02-14 23:42:52 +01:00
) -> str | AsyncIterator[str]:
"""
Perform a async query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
"""
2024-11-25 13:29:55 +08:00
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query(
2024-10-10 15:02:30 +08:00
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
2025-01-07 16:26:12 +08:00
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
2025-02-02 04:27:55 +08:00
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
2024-10-10 15:02:30 +08:00
)
elif param.mode == "naive":
response = await naive_query(
query,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
2025-01-07 16:26:12 +08:00
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
2024-10-10 15:02:30 +08:00
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
2025-01-07 16:26:12 +08:00
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
)
2024-10-10 15:02:30 +08:00
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
def query_with_separate_keyword_extraction(
2025-02-14 23:52:05 +01:00
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question).
"""
loop = always_get_an_event_loop()
2025-01-14 22:23:14 +05:30
return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param)
)
async def aquery_with_separate_keyword_extraction(
2025-02-14 23:52:05 +01:00
self, query: str, prompt: str, param: QueryParam = QueryParam()
2025-02-15 00:01:21 +01:00
) -> str | AsyncIterator[str]:
"""
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
"""
# ---------------------
# STEP 1: Keyword Extraction
# ---------------------
hl_keywords, ll_keywords = await extract_keywords_only(
text=query,
param=param,
global_config=asdict(self),
2025-01-14 22:23:14 +05:30
hashing_kv=self.llm_response_cache
or self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
2025-01-14 22:23:14 +05:30
),
)
2025-01-14 22:23:14 +05:30
2025-02-14 23:52:05 +01:00
param.hl_keywords = hl_keywords
param.ll_keywords = ll_keywords
2025-01-14 22:23:14 +05:30
# ---------------------
# STEP 2: Final Query Logic
# ---------------------
2025-01-14 22:23:14 +05:30
# Create a new string with the prompt and the keywords
ll_keywords_str = ", ".join(ll_keywords)
hl_keywords_str = ", ".join(hl_keywords)
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query_with_keywords(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
2025-01-14 22:23:14 +05:30
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
2025-02-14 23:52:05 +01:00
embedding_func=self.embedding_func,
),
)
elif param.mode == "naive":
response = await naive_query(
formatted_question,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
2025-01-14 22:23:14 +05:30
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
2025-01-14 22:23:14 +05:30
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
2024-10-10 15:02:30 +08:00
return response
async def _query_done(self):
2025-02-15 00:01:21 +01:00
await self.llm_response_cache.index_done_callback()
2024-11-11 17:48:40 +08:00
2025-02-18 21:16:52 +01:00
def delete_by_entity(self, entity_name: str) -> None:
2024-11-11 17:48:40 +08:00
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_entity(entity_name))
2024-11-11 17:54:22 +08:00
2025-02-18 21:16:52 +01:00
async def adelete_by_entity(self, entity_name: str) -> None:
2024-11-11 17:54:22 +08:00
entity_name = f'"{entity_name.upper()}"'
2024-11-11 17:48:40 +08:00
try:
await self.entities_vdb.delete_entity(entity_name)
2024-12-31 17:15:57 +08:00
await self.relationships_vdb.delete_entity_relation(entity_name)
2024-11-11 17:48:40 +08:00
await self.chunk_entity_relation_graph.delete_node(entity_name)
2024-11-11 17:54:22 +08:00
logger.info(
f"Entity '{entity_name}' and its relationships have been deleted."
)
2024-11-11 17:48:40 +08:00
await self._delete_by_entity_done()
except Exception as e:
logger.error(f"Error while deleting entity '{entity_name}': {e}")
2024-11-11 17:54:22 +08:00
2025-02-18 21:16:52 +01:00
async def _delete_by_entity_done(self) -> None:
2025-02-15 00:01:21 +01:00
await asyncio.gather(
*[
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
self.entities_vdb,
self.relationships_vdb,
self.chunk_entity_relation_graph,
]
]
)
def _get_content_summary(self, content: str, max_length: int = 100) -> str:
"""Get summary of document content
Args:
content: Original document content
max_length: Maximum length of summary
Returns:
Truncated content with ellipsis if needed
"""
content = content.strip()
if len(content) <= max_length:
return content
return content[:max_length] + "..."
2025-02-09 11:24:08 +01:00
async def get_processing_status(self) -> dict[str, int]:
"""Get current document processing status counts
Returns:
Dict with counts for each status
"""
return await self.doc_status.get_status_counts()
2024-12-31 17:15:57 +08:00
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get documents by status
Returns:
Dict with document id is keys and document status is values
"""
return await self.doc_status.get_docs_by_status(status)
2025-02-15 00:10:37 +01:00
async def adelete_by_doc_id(self, doc_id: str) -> None:
2024-12-31 17:15:57 +08:00
"""Delete a document and all its related data
Args:
doc_id: Document ID to delete
"""
try:
# 1. Get the document status and related data
2025-02-13 20:45:24 +01:00
doc_status = await self.doc_status.get_by_id(doc_id)
2024-12-31 17:15:57 +08:00
if not doc_status:
logger.warning(f"Document {doc_id} not found")
return
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
logger.debug(f"Starting deletion for document {doc_id}")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# 2. Get all related chunks
2025-02-13 20:45:24 +01:00
chunks = await self.text_chunks.get_by_id(doc_id)
2025-02-15 00:10:37 +01:00
if not chunks:
return
2024-12-31 17:15:57 +08:00
chunk_ids = list(chunks.keys())
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# 3. Before deleting, check the related entities and relationships for these chunks
for chunk_id in chunk_ids:
# Check entities
entities = [
2024-12-31 17:32:04 +08:00
dp
for dp in self.entities_vdb.client_storage["data"]
2024-12-31 17:15:57 +08:00
if dp.get("source_id") == chunk_id
]
logger.debug(f"Chunk {chunk_id} has {len(entities)} related entities")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Check relationships
relations = [
2024-12-31 17:32:04 +08:00
dp
for dp in self.relationships_vdb.client_storage["data"]
2024-12-31 17:15:57 +08:00
if dp.get("source_id") == chunk_id
]
logger.debug(f"Chunk {chunk_id} has {len(relations)} related relations")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Continue with the original deletion process...
# 4. Delete chunks from vector database
if chunk_ids:
await self.chunks_vdb.delete(chunk_ids)
await self.text_chunks.delete(chunk_ids)
# 5. Find and process entities and relationships that have these chunks as source
# Get all nodes in the graph
nodes = self.chunk_entity_relation_graph._graph.nodes(data=True)
edges = self.chunk_entity_relation_graph._graph.edges(data=True)
# Track which entities and relationships need to be deleted or updated
entities_to_delete = set()
entities_to_update = {} # entity_name -> new_source_id
relationships_to_delete = set()
relationships_to_update = {} # (src, tgt) -> new_source_id
# Process entities
for node, data in nodes:
2024-12-31 17:32:04 +08:00
if "source_id" in data:
2024-12-31 17:15:57 +08:00
# Split source_id using GRAPH_FIELD_SEP
2024-12-31 17:32:04 +08:00
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
2024-12-31 17:15:57 +08:00
sources.difference_update(chunk_ids)
if not sources:
entities_to_delete.add(node)
2024-12-31 17:32:04 +08:00
logger.debug(
f"Entity {node} marked for deletion - no remaining sources"
)
2024-12-31 17:15:57 +08:00
else:
new_source_id = GRAPH_FIELD_SEP.join(sources)
entities_to_update[node] = new_source_id
2024-12-31 17:32:04 +08:00
logger.debug(
f"Entity {node} will be updated with new source_id: {new_source_id}"
)
2024-12-31 17:15:57 +08:00
# Process relationships
for src, tgt, data in edges:
2024-12-31 17:32:04 +08:00
if "source_id" in data:
2024-12-31 17:15:57 +08:00
# Split source_id using GRAPH_FIELD_SEP
2024-12-31 17:32:04 +08:00
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
2024-12-31 17:15:57 +08:00
sources.difference_update(chunk_ids)
if not sources:
relationships_to_delete.add((src, tgt))
2024-12-31 17:32:04 +08:00
logger.debug(
f"Relationship {src}-{tgt} marked for deletion - no remaining sources"
)
2024-12-31 17:15:57 +08:00
else:
new_source_id = GRAPH_FIELD_SEP.join(sources)
relationships_to_update[(src, tgt)] = new_source_id
2024-12-31 17:32:04 +08:00
logger.debug(
f"Relationship {src}-{tgt} will be updated with new source_id: {new_source_id}"
)
2024-12-31 17:15:57 +08:00
# Delete entities
if entities_to_delete:
for entity in entities_to_delete:
await self.entities_vdb.delete_entity(entity)
logger.debug(f"Deleted entity {entity} from vector DB")
self.chunk_entity_relation_graph.remove_nodes(list(entities_to_delete))
logger.debug(f"Deleted {len(entities_to_delete)} entities from graph")
# Update entities
for entity, new_source_id in entities_to_update.items():
node_data = self.chunk_entity_relation_graph._graph.nodes[entity]
2024-12-31 17:32:04 +08:00
node_data["source_id"] = new_source_id
2024-12-31 17:15:57 +08:00
await self.chunk_entity_relation_graph.upsert_node(entity, node_data)
2024-12-31 17:32:04 +08:00
logger.debug(
f"Updated entity {entity} with new source_id: {new_source_id}"
)
2024-12-31 17:15:57 +08:00
# Delete relationships
if relationships_to_delete:
for src, tgt in relationships_to_delete:
rel_id_0 = compute_mdhash_id(src + tgt, prefix="rel-")
rel_id_1 = compute_mdhash_id(tgt + src, prefix="rel-")
await self.relationships_vdb.delete([rel_id_0, rel_id_1])
logger.debug(f"Deleted relationship {src}-{tgt} from vector DB")
2024-12-31 17:32:04 +08:00
self.chunk_entity_relation_graph.remove_edges(
list(relationships_to_delete)
)
logger.debug(
f"Deleted {len(relationships_to_delete)} relationships from graph"
)
2024-12-31 17:15:57 +08:00
# Update relationships
for (src, tgt), new_source_id in relationships_to_update.items():
edge_data = self.chunk_entity_relation_graph._graph.edges[src, tgt]
2024-12-31 17:32:04 +08:00
edge_data["source_id"] = new_source_id
2024-12-31 17:15:57 +08:00
await self.chunk_entity_relation_graph.upsert_edge(src, tgt, edge_data)
2024-12-31 17:32:04 +08:00
logger.debug(
f"Updated relationship {src}-{tgt} with new source_id: {new_source_id}"
)
2024-12-31 17:15:57 +08:00
# 6. Delete original document and status
await self.full_docs.delete([doc_id])
await self.doc_status.delete([doc_id])
# 7. Ensure all indexes are updated
await self._insert_done()
logger.info(
f"Successfully deleted document {doc_id} and related data. "
f"Deleted {len(entities_to_delete)} entities and {len(relationships_to_delete)} relationships. "
f"Updated {len(entities_to_update)} entities and {len(relationships_to_update)} relationships."
)
# Add verification step
async def verify_deletion():
# Verify if the document has been deleted
if await self.full_docs.get_by_id(doc_id):
logger.error(f"Document {doc_id} still exists in full_docs")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Verify if chunks have been deleted
2025-02-13 20:45:24 +01:00
remaining_chunks = await self.text_chunks.get_by_id(doc_id)
2024-12-31 17:15:57 +08:00
if remaining_chunks:
logger.error(f"Found {len(remaining_chunks)} remaining chunks")
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Verify entities and relationships
for chunk_id in chunk_ids:
# Check entities
entities_with_chunk = [
2024-12-31 17:32:04 +08:00
dp
for dp in self.entities_vdb.client_storage["data"]
if chunk_id
2025-01-07 16:26:12 +08:00
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
2024-12-31 17:15:57 +08:00
]
if entities_with_chunk:
2024-12-31 17:32:04 +08:00
logger.error(
f"Found {len(entities_with_chunk)} entities still referencing chunk {chunk_id}"
)
2024-12-31 17:15:57 +08:00
# Check relationships
relations_with_chunk = [
2024-12-31 17:32:04 +08:00
dp
for dp in self.relationships_vdb.client_storage["data"]
if chunk_id
2025-01-07 16:26:12 +08:00
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
2024-12-31 17:15:57 +08:00
]
if relations_with_chunk:
2024-12-31 17:32:04 +08:00
logger.error(
f"Found {len(relations_with_chunk)} relations still referencing chunk {chunk_id}"
)
2024-12-31 17:15:57 +08:00
await verify_deletion()
except Exception as e:
logger.error(f"Error while deleting document {doc_id}: {e}")
2024-12-31 17:32:04 +08:00
async def get_entity_info(
2025-01-07 16:26:12 +08:00
self, entity_name: str, include_vector_data: bool = False
2025-02-14 23:49:39 +01:00
) -> dict[str, str | None | dict[str, str]]:
2024-12-31 17:15:57 +08:00
"""Get detailed information of an entity
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
Args:
entity_name: Entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
Returns:
dict: A dictionary containing entity information, including:
- entity_name: Entity name
- source_id: Source document ID
- graph_data: Complete node data from the graph database
- vector_data: (optional) Data from the vector database
"""
entity_name = f'"{entity_name.upper()}"'
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Get information from the graph
node_data = await self.chunk_entity_relation_graph.get_node(entity_name)
2024-12-31 17:32:04 +08:00
source_id = node_data.get("source_id") if node_data else None
2025-02-14 23:49:39 +01:00
result: dict[str, str | None | dict[str, str]] = {
2024-12-31 17:15:57 +08:00
"entity_name": entity_name,
"source_id": source_id,
"graph_data": node_data,
}
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Optional: Get vector database information
if include_vector_data:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
vector_data = self.entities_vdb._client.get([entity_id])
result["vector_data"] = vector_data[0] if vector_data else None
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
return result
2024-12-31 17:32:04 +08:00
async def get_relation_info(
2025-01-07 16:26:12 +08:00
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
2025-02-18 21:16:52 +01:00
) -> dict[str, str | None | dict[str, str]]:
2024-12-31 17:15:57 +08:00
"""Get detailed information of a relationship
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
Args:
src_entity: Source entity name (no need for quotes)
tgt_entity: Target entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
Returns:
dict: A dictionary containing relationship information, including:
- src_entity: Source entity name
- tgt_entity: Target entity name
- source_id: Source document ID
- graph_data: Complete edge data from the graph database
- vector_data: (optional) Data from the vector database
"""
src_entity = f'"{src_entity.upper()}"'
tgt_entity = f'"{tgt_entity.upper()}"'
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Get information from the graph
2024-12-31 17:32:04 +08:00
edge_data = await self.chunk_entity_relation_graph.get_edge(
src_entity, tgt_entity
)
source_id = edge_data.get("source_id") if edge_data else None
2025-02-14 23:49:39 +01:00
result: dict[str, str | None | dict[str, str]] = {
2024-12-31 17:15:57 +08:00
"src_entity": src_entity,
"tgt_entity": tgt_entity,
"source_id": source_id,
"graph_data": edge_data,
}
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
# Optional: Get vector database information
if include_vector_data:
rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-")
vector_data = self.relationships_vdb._client.get([rel_id])
result["vector_data"] = vector_data[0] if vector_data else None
2024-12-31 17:32:04 +08:00
2024-12-31 17:15:57 +08:00
return result
2025-02-20 13:18:17 +01:00
def check_storage_env_vars(self, storage_name: str) -> None:
"""Check if all required environment variables for storage implementation exist
Args:
storage_name: Storage implementation name
Raises:
ValueError: If required environment variables are missing
"""
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Storage implementation '{storage_name}' requires the following "
f"environment variables: {', '.join(missing_vars)}"
2025-02-20 13:21:41 +01:00
)