2024-10-10 15:02:30 +08:00
|
|
|
import os
|
2024-10-18 16:50:02 +01:00
|
|
|
import copy
|
2024-10-23 15:02:28 +08:00
|
|
|
from functools import lru_cache
|
2024-10-18 14:17:14 +01:00
|
|
|
import json
|
|
|
|
import aioboto3
|
2024-10-22 15:16:57 +08:00
|
|
|
import aiohttp
|
2024-10-10 15:02:30 +08:00
|
|
|
import numpy as np
|
2024-10-16 15:15:10 +08:00
|
|
|
import ollama
|
2024-10-23 11:08:40 +08:00
|
|
|
|
2024-10-21 20:40:49 +02:00
|
|
|
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout, AsyncAzureOpenAI
|
2024-10-23 11:08:40 +08:00
|
|
|
|
2024-10-22 15:16:57 +08:00
|
|
|
import base64
|
|
|
|
import struct
|
2024-10-23 11:08:40 +08:00
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
from tenacity import (
|
|
|
|
retry,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
retry_if_exception_type,
|
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2024-10-14 19:41:07 +08:00
|
|
|
import torch
|
2024-10-21 18:34:43 +01:00
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from typing import List, Dict, Callable, Any
|
2024-10-10 15:02:30 +08:00
|
|
|
from .base import BaseKVStorage
|
|
|
|
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-14 19:41:07 +08:00
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
2024-10-19 09:43:17 +05:30
|
|
|
|
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
|
|
|
async def openai_complete_if_cache(
|
2024-10-19 09:43:17 +05:30
|
|
|
model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
|
|
|
history_messages=[],
|
|
|
|
base_url=None,
|
|
|
|
api_key=None,
|
|
|
|
**kwargs,
|
2024-10-10 15:02:30 +08:00
|
|
|
) -> str:
|
2024-10-15 12:55:05 -07:00
|
|
|
if api_key:
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
openai_async_client = (
|
|
|
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
|
|
|
)
|
2024-10-10 15:02:30 +08:00
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
|
|
)
|
|
|
|
return response.choices[0].message.content
|
|
|
|
|
2024-10-21 20:40:49 +02:00
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
|
|
|
async def azure_openai_complete_if_cache(model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
|
|
|
history_messages=[],
|
|
|
|
base_url=None,
|
|
|
|
api_key=None,
|
|
|
|
**kwargs):
|
|
|
|
if api_key:
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
if base_url:
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
|
|
|
|
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
|
|
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
if prompt is not None:
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
|
|
response = await openai_async_client.chat.completions.create(
|
|
|
|
model=model, messages=messages, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert(
|
|
|
|
{args_hash: {"return": response.choices[0].message.content, "model": model}}
|
|
|
|
)
|
|
|
|
return response.choices[0].message.content
|
2024-10-18 16:50:02 +01:00
|
|
|
|
|
|
|
class BedrockError(Exception):
|
|
|
|
"""Generic error for issues related to Amazon Bedrock"""
|
|
|
|
|
|
|
|
|
2024-10-18 14:17:14 +01:00
|
|
|
@retry(
|
2024-10-18 16:50:02 +01:00
|
|
|
stop=stop_after_attempt(5),
|
|
|
|
wait=wait_exponential(multiplier=1, max=60),
|
|
|
|
retry=retry_if_exception_type((BedrockError)),
|
2024-10-18 14:17:14 +01:00
|
|
|
)
|
|
|
|
async def bedrock_complete_if_cache(
|
2024-10-19 09:43:17 +05:30
|
|
|
model,
|
|
|
|
prompt,
|
|
|
|
system_prompt=None,
|
|
|
|
history_messages=[],
|
|
|
|
aws_access_key_id=None,
|
|
|
|
aws_secret_access_key=None,
|
|
|
|
aws_session_token=None,
|
|
|
|
**kwargs,
|
2024-10-18 14:17:14 +01:00
|
|
|
) -> str:
|
2024-10-19 09:43:17 +05:30
|
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
|
|
)
|
|
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
|
|
)
|
|
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
|
|
)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Fix message history format
|
2024-10-18 14:17:14 +01:00
|
|
|
messages = []
|
2024-10-18 16:50:02 +01:00
|
|
|
for history_message in history_messages:
|
|
|
|
message = copy.copy(history_message)
|
2024-10-19 09:43:17 +05:30
|
|
|
message["content"] = [{"text": message["content"]}]
|
2024-10-18 16:50:02 +01:00
|
|
|
messages.append(message)
|
|
|
|
|
|
|
|
# Add user prompt
|
2024-10-19 09:43:17 +05:30
|
|
|
messages.append({"role": "user", "content": [{"text": prompt}]})
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Initialize Converse API arguments
|
2024-10-19 09:43:17 +05:30
|
|
|
args = {"modelId": model, "messages": messages}
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Define system prompt
|
2024-10-18 14:17:14 +01:00
|
|
|
if system_prompt:
|
2024-10-19 09:43:17 +05:30
|
|
|
args["system"] = [{"text": system_prompt}]
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Map and set up inference parameters
|
|
|
|
inference_params_map = {
|
2024-10-19 09:43:17 +05:30
|
|
|
"max_tokens": "maxTokens",
|
|
|
|
"top_p": "topP",
|
|
|
|
"stop_sequences": "stopSequences",
|
2024-10-18 16:50:02 +01:00
|
|
|
}
|
2024-10-19 09:43:17 +05:30
|
|
|
if inference_params := list(
|
|
|
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
|
|
|
):
|
|
|
|
args["inferenceConfig"] = {}
|
2024-10-18 16:50:02 +01:00
|
|
|
for param in inference_params:
|
2024-10-19 09:43:17 +05:30
|
|
|
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
|
|
|
kwargs.pop(param)
|
|
|
|
)
|
2024-10-18 16:50:02 +01:00
|
|
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
2024-10-18 14:17:14 +01:00
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
2024-10-18 16:50:02 +01:00
|
|
|
# Call model via Converse API
|
2024-10-18 14:17:14 +01:00
|
|
|
session = aioboto3.Session()
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
2024-10-18 16:50:02 +01:00
|
|
|
try:
|
|
|
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
|
|
|
except Exception as e:
|
|
|
|
raise BedrockError(e)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
if hashing_kv is not None:
|
2024-10-19 09:43:17 +05:30
|
|
|
await hashing_kv.upsert(
|
|
|
|
{
|
|
|
|
args_hash: {
|
|
|
|
"return": response["output"]["message"]["content"][0]["text"],
|
|
|
|
"model": model,
|
|
|
|
}
|
2024-10-18 14:17:14 +01:00
|
|
|
}
|
2024-10-19 09:43:17 +05:30
|
|
|
)
|
|
|
|
|
|
|
|
return response["output"]["message"]["content"][0]["text"]
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
|
2024-10-23 15:02:28 +08:00
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
def initialize_hf_model(model_name):
|
|
|
|
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
2024-10-23 15:25:46 +08:00
|
|
|
if hf_tokenizer.pad_token is None:
|
|
|
|
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
2024-10-23 15:02:28 +08:00
|
|
|
|
|
|
|
return hf_model, hf_tokenizer
|
|
|
|
|
|
|
|
|
2024-10-14 19:41:07 +08:00
|
|
|
async def hf_model_if_cache(
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
model_name = model
|
2024-10-23 15:02:28 +08:00
|
|
|
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
2024-10-14 19:41:07 +08:00
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
2024-10-19 09:43:17 +05:30
|
|
|
input_prompt = ""
|
2024-10-14 19:41:07 +08:00
|
|
|
try:
|
2024-10-19 09:43:17 +05:30
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(
|
|
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
)
|
|
|
|
except Exception:
|
2024-10-14 19:41:07 +08:00
|
|
|
try:
|
|
|
|
ori_message = copy.deepcopy(messages)
|
2024-10-19 09:43:17 +05:30
|
|
|
if messages[0]["role"] == "system":
|
|
|
|
messages[1]["content"] = (
|
|
|
|
"<system>"
|
|
|
|
+ messages[0]["content"]
|
|
|
|
+ "</system>\n"
|
|
|
|
+ messages[1]["content"]
|
|
|
|
)
|
2024-10-14 19:41:07 +08:00
|
|
|
messages = messages[1:]
|
2024-10-19 09:43:17 +05:30
|
|
|
input_prompt = hf_tokenizer.apply_chat_template(
|
|
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
)
|
|
|
|
except Exception:
|
2024-10-14 19:41:07 +08:00
|
|
|
len_message = len(ori_message)
|
|
|
|
for msgid in range(len_message):
|
2024-10-19 09:43:17 +05:30
|
|
|
input_prompt = (
|
|
|
|
input_prompt
|
|
|
|
+ "<"
|
|
|
|
+ ori_message[msgid]["role"]
|
|
|
|
+ ">"
|
|
|
|
+ ori_message[msgid]["content"]
|
|
|
|
+ "</"
|
|
|
|
+ ori_message[msgid]["role"]
|
|
|
|
+ ">\n"
|
|
|
|
)
|
|
|
|
|
|
|
|
input_ids = hf_tokenizer(
|
|
|
|
input_prompt, return_tensors="pt", padding=True, truncation=True
|
|
|
|
).to("cuda")
|
2024-10-26 02:20:23 +08:00
|
|
|
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
2024-10-19 09:43:17 +05:30
|
|
|
output = hf_model.generate(
|
|
|
|
**input_ids, max_new_tokens=200, num_return_sequences=1, early_stopping=True
|
|
|
|
)
|
2024-10-26 02:20:23 +08:00
|
|
|
response_text = hf_tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
2024-10-14 19:41:07 +08:00
|
|
|
if hashing_kv is not None:
|
2024-10-19 09:43:17 +05:30
|
|
|
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}})
|
2024-10-14 19:41:07 +08:00
|
|
|
return response_text
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_model_if_cache(
|
|
|
|
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
kwargs.pop("max_tokens", None)
|
|
|
|
kwargs.pop("response_format", None)
|
|
|
|
|
|
|
|
ollama_client = ollama.AsyncClient()
|
|
|
|
messages = []
|
|
|
|
if system_prompt:
|
|
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
|
|
|
messages.extend(history_messages)
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
if hashing_kv is not None:
|
|
|
|
args_hash = compute_args_hash(model, messages)
|
|
|
|
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
|
|
|
if if_cache_return is not None:
|
|
|
|
return if_cache_return["return"]
|
|
|
|
|
|
|
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
|
|
|
|
|
|
|
result = response["message"]["content"]
|
|
|
|
|
|
|
|
if hashing_kv is not None:
|
|
|
|
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
|
|
|
|
|
|
|
return result
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
async def gpt_4o_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
"gpt-4o",
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def gpt_4o_mini_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
"gpt-4o-mini",
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-21 20:40:49 +02:00
|
|
|
async def azure_openai_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await azure_openai_complete_if_cache(
|
|
|
|
"conversation-4o-mini",
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
async def bedrock_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
return await bedrock_complete_if_cache(
|
2024-10-18 16:50:02 +01:00
|
|
|
"anthropic.claude-3-haiku-20240307-v1:0",
|
2024-10-18 14:17:14 +01:00
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-10-14 20:33:46 +08:00
|
|
|
async def hf_model_complete(
|
2024-10-14 19:41:07 +08:00
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
2024-10-19 09:43:17 +05:30
|
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
2024-10-14 19:41:07 +08:00
|
|
|
return await hf_model_if_cache(
|
2024-10-15 20:06:59 +08:00
|
|
|
model_name,
|
2024-10-14 19:41:07 +08:00
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_model_complete(
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
2024-10-19 09:43:17 +05:30
|
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
2024-10-16 15:15:10 +08:00
|
|
|
return await ollama_model_if_cache(
|
|
|
|
model_name,
|
|
|
|
prompt,
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
history_messages=history_messages,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
2024-10-22 15:16:57 +08:00
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
2024-10-10 15:02:30 +08:00
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
async def openai_embedding(
|
|
|
|
texts: list[str],
|
|
|
|
model: str = "text-embedding-3-small",
|
|
|
|
base_url: str = None,
|
|
|
|
api_key: str = None,
|
|
|
|
) -> np.ndarray:
|
2024-10-15 12:55:05 -07:00
|
|
|
if api_key:
|
|
|
|
os.environ["OPENAI_API_KEY"] = api_key
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
openai_async_client = (
|
|
|
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
|
|
|
)
|
2024-10-10 15:02:30 +08:00
|
|
|
response = await openai_async_client.embeddings.create(
|
2024-10-15 12:55:05 -07:00
|
|
|
model=model, input=texts, encoding_format="float"
|
2024-10-10 15:02:30 +08:00
|
|
|
)
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
2024-10-23 11:08:40 +08:00
|
|
|
|
2024-10-21 20:40:49 +02:00
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
|
|
|
async def azure_openai_embedding(
|
|
|
|
texts: list[str],
|
|
|
|
model: str = "text-embedding-3-small",
|
|
|
|
base_url: str = None,
|
|
|
|
api_key: str = None,
|
|
|
|
) -> np.ndarray:
|
|
|
|
if api_key:
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
|
|
|
if base_url:
|
|
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
|
|
|
|
|
|
|
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
|
|
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
|
|
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
|
|
|
|
|
|
|
response = await openai_async_client.embeddings.create(
|
|
|
|
model=model, input=texts, encoding_format="float"
|
|
|
|
)
|
|
|
|
return np.array([dp.embedding for dp in response.data])
|
|
|
|
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-22 15:16:57 +08:00
|
|
|
@retry(
|
|
|
|
stop=stop_after_attempt(3),
|
|
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
|
|
|
)
|
|
|
|
async def siliconcloud_embedding(
|
|
|
|
texts: list[str],
|
|
|
|
model: str = "netease-youdao/bce-embedding-base_v1",
|
|
|
|
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
|
|
|
max_token_size: int = 512,
|
|
|
|
api_key: str = None,
|
|
|
|
) -> np.ndarray:
|
|
|
|
if api_key and not api_key.startswith('Bearer '):
|
|
|
|
api_key = 'Bearer ' + api_key
|
|
|
|
|
|
|
|
headers = {
|
|
|
|
"Authorization": api_key,
|
|
|
|
"Content-Type": "application/json"
|
|
|
|
}
|
|
|
|
|
|
|
|
truncate_texts = [text[0:max_token_size] for text in texts]
|
|
|
|
|
|
|
|
payload = {
|
|
|
|
"model": model,
|
|
|
|
"input": truncate_texts,
|
|
|
|
"encoding_format": "base64"
|
|
|
|
}
|
|
|
|
|
|
|
|
base64_strings = []
|
|
|
|
async with aiohttp.ClientSession() as session:
|
|
|
|
async with session.post(base_url, headers=headers, json=payload) as response:
|
|
|
|
content = await response.json()
|
|
|
|
if 'code' in content:
|
|
|
|
raise ValueError(content)
|
|
|
|
base64_strings = [item['embedding'] for item in content['data']]
|
|
|
|
|
|
|
|
embeddings = []
|
|
|
|
for string in base64_strings:
|
|
|
|
decode_bytes = base64.b64decode(string)
|
|
|
|
n = len(decode_bytes) // 4
|
|
|
|
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
|
|
|
|
embeddings.append(float_array)
|
|
|
|
return np.array(embeddings)
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-23 11:08:40 +08:00
|
|
|
|
2024-10-18 14:17:14 +01:00
|
|
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
|
|
# @retry(
|
|
|
|
# stop=stop_after_attempt(3),
|
|
|
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
|
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
|
|
|
# )
|
|
|
|
async def bedrock_embedding(
|
2024-10-19 09:43:17 +05:30
|
|
|
texts: list[str],
|
|
|
|
model: str = "amazon.titan-embed-text-v2:0",
|
|
|
|
aws_access_key_id=None,
|
|
|
|
aws_secret_access_key=None,
|
|
|
|
aws_session_token=None,
|
|
|
|
) -> np.ndarray:
|
|
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
|
|
)
|
|
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
|
|
)
|
|
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
|
|
)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
session = aioboto3.Session()
|
|
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
|
|
if (model_provider := model.split(".")[0]) == "amazon":
|
|
|
|
embed_texts = []
|
|
|
|
for text in texts:
|
|
|
|
if "v2" in model:
|
2024-10-19 09:43:17 +05:30
|
|
|
body = json.dumps(
|
|
|
|
{
|
|
|
|
"inputText": text,
|
|
|
|
# 'dimensions': embedding_dim,
|
|
|
|
"embeddingTypes": ["float"],
|
|
|
|
}
|
|
|
|
)
|
2024-10-18 14:17:14 +01:00
|
|
|
elif "v1" in model:
|
2024-10-19 09:43:17 +05:30
|
|
|
body = json.dumps({"inputText": text})
|
2024-10-18 14:17:14 +01:00
|
|
|
else:
|
|
|
|
raise ValueError(f"Model {model} is not supported!")
|
|
|
|
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
modelId=model,
|
|
|
|
body=body,
|
|
|
|
accept="application/json",
|
2024-10-19 09:43:17 +05:30
|
|
|
contentType="application/json",
|
2024-10-18 14:17:14 +01:00
|
|
|
)
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
response_body = await response.get("body").json()
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
embed_texts.append(response_body["embedding"])
|
2024-10-18 14:17:14 +01:00
|
|
|
elif model_provider == "cohere":
|
2024-10-19 09:43:17 +05:30
|
|
|
body = json.dumps(
|
|
|
|
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
|
|
|
)
|
2024-10-18 14:17:14 +01:00
|
|
|
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
|
|
model=model,
|
|
|
|
body=body,
|
|
|
|
accept="application/json",
|
2024-10-19 09:43:17 +05:30
|
|
|
contentType="application/json",
|
2024-10-18 14:17:14 +01:00
|
|
|
)
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
response_body = json.loads(response.get("body").read())
|
2024-10-18 14:17:14 +01:00
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
embed_texts = response_body["embeddings"]
|
2024-10-18 14:17:14 +01:00
|
|
|
else:
|
|
|
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
|
|
|
|
|
|
|
return np.array(embed_texts)
|
|
|
|
|
|
|
|
|
2024-10-15 19:40:08 +08:00
|
|
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
2024-10-19 09:43:17 +05:30
|
|
|
input_ids = tokenizer(
|
|
|
|
texts, return_tensors="pt", padding=True, truncation=True
|
|
|
|
).input_ids
|
2024-10-14 19:41:07 +08:00
|
|
|
with torch.no_grad():
|
2024-10-15 19:40:08 +08:00
|
|
|
outputs = embed_model(input_ids)
|
2024-10-14 19:41:07 +08:00
|
|
|
embeddings = outputs.last_hidden_state.mean(dim=1)
|
|
|
|
return embeddings.detach().numpy()
|
|
|
|
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-16 15:15:10 +08:00
|
|
|
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
|
|
|
embed_text = []
|
|
|
|
for text in texts:
|
|
|
|
data = ollama.embeddings(model=embed_model, prompt=text)
|
|
|
|
embed_text.append(data["embedding"])
|
|
|
|
|
|
|
|
return embed_text
|
2024-10-14 19:41:07 +08:00
|
|
|
|
2024-10-21 18:34:43 +01:00
|
|
|
class Model(BaseModel):
|
|
|
|
"""
|
|
|
|
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
gen_func (Callable[[Any], str]): A callable function that generates the response from the language model.
|
|
|
|
The function should take any argument and return a string.
|
|
|
|
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
|
|
|
|
This could include parameters such as the model name, API key, etc.
|
|
|
|
|
|
|
|
Example usage:
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]})
|
|
|
|
|
|
|
|
In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model.
|
|
|
|
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
|
|
|
"""
|
|
|
|
|
|
|
|
gen_func: Callable[[Any], str] = Field(..., description="A function that generates the response from the llm. The response must be a string")
|
|
|
|
kwargs: Dict[str, Any] = Field(..., description="The arguments to pass to the callable function. Eg. the api key, model name, etc")
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
|
|
|
|
|
|
class MultiModel():
|
|
|
|
"""
|
|
|
|
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
|
|
|
Could also be used for spliting across diffrent models or providers.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
models (List[Model]): A list of language models to be used.
|
|
|
|
|
|
|
|
Usage example:
|
|
|
|
```python
|
|
|
|
models = [
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}),
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}),
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}),
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}),
|
|
|
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}),
|
|
|
|
]
|
|
|
|
multi_model = MultiModel(models)
|
|
|
|
rag = LightRAG(
|
|
|
|
llm_model_func=multi_model.llm_model_func
|
|
|
|
/ ..other args
|
|
|
|
)
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
def __init__(self, models: List[Model]):
|
|
|
|
self._models = models
|
|
|
|
self._current_model = 0
|
|
|
|
|
|
|
|
def _next_model(self):
|
|
|
|
self._current_model = (self._current_model + 1) % len(self._models)
|
|
|
|
return self._models[self._current_model]
|
|
|
|
|
|
|
|
async def llm_model_func(
|
|
|
|
self,
|
|
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
|
|
) -> str:
|
|
|
|
kwargs.pop("model", None) # stop from overwriting the custom model name
|
|
|
|
next_model = self._next_model()
|
|
|
|
args = dict(prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, **next_model.kwargs)
|
|
|
|
|
|
|
|
return await next_model.gen_func(
|
|
|
|
**args
|
|
|
|
)
|
2024-10-19 09:43:17 +05:30
|
|
|
|
2024-10-10 15:02:30 +08:00
|
|
|
if __name__ == "__main__":
|
|
|
|
import asyncio
|
|
|
|
|
|
|
|
async def main():
|
2024-10-19 09:43:17 +05:30
|
|
|
result = await gpt_4o_mini_complete("How are you?")
|
2024-10-10 15:02:30 +08:00
|
|
|
print(result)
|
|
|
|
|
|
|
|
asyncio.run(main())
|