103 lines
3.4 KiB
Python
Raw Normal View History

2024-10-07 17:23:54 +08:00
import os
import numpy as np
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_complete_if_cache(
model, prompt, api_key='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'
, system_prompt=None, history_messages=[], **kwargs
) -> str:
openai_async_client = AsyncOpenAI(api_key=api_key)
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
if hashing_kv is not None:
args_hash = compute_args_hash(model, messages)
if_cache_return = await hashing_kv.get_by_id(args_hash)
if if_cache_return is not None:
return if_cache_return["return"]
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
)
return response.choices[0].message.content
async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
)
async def openai_embedding(texts: list[str]) -> np.ndarray:
api_key = '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'
openai_async_client = AsyncOpenAI(api_key=api_key)
response = await openai_async_client.embeddings.create(
model="text-embedding-3-small", input=texts, encoding_format="float"
)
return np.array([dp.embedding for dp in response.data])
async def moonshot_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"moonshot-v1-128k",
prompt,
api_key='sk-OsvLvHgFFH3tz6Yhym3OAhcTfZ9y7rHEgQ3JDLmnuLpTw9C0',
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if __name__ == "__main__":
import asyncio
async def main():
result = await gpt_4o_mini_complete('How are you?')
print(result)
asyncio.run(main())