LightRAG/examples/lightrag_api_oracle_demo.py

264 lines
7.6 KiB
Python
Raw Normal View History

2024-11-11 16:37:24 +08:00
from fastapi import FastAPI, HTTPException, File, UploadFile
2024-11-25 13:29:55 +08:00
from fastapi import Query
2024-11-11 16:37:24 +08:00
from contextlib import asynccontextmanager
from pydantic import BaseModel
2024-11-25 13:40:38 +08:00
from typing import Optional, Any
import sys
import os
2024-11-11 16:37:24 +08:00
from pathlib import Path
import asyncio
import nest_asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
2024-11-11 16:37:24 +08:00
from lightrag.utils import EmbeddingFunc
import numpy as np
2024-11-25 13:40:38 +08:00
print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))
2024-11-11 16:37:24 +08:00
2024-11-12 11:19:34 +08:00
2024-11-11 16:37:24 +08:00
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
DEFAULT_RAG_DIR = "index_default"
# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")
2024-11-25 13:29:55 +08:00
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus-08-2024")
2024-11-11 16:37:24 +08:00
print(f"LLM_MODEL: {LLM_MODEL}")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
2024-11-25 13:40:38 +08:00
2025-02-19 04:12:16 +08:00
os.environ["ORACLE_USER"] = ""
os.environ["ORACLE_PASSWORD"] = ""
os.environ["ORACLE_DSN"] = ""
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
os.environ["ORACLE_WORKSPACE"] = "company"
2024-11-25 13:40:38 +08:00
2024-11-11 16:37:24 +08:00
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
2024-11-11 16:37:24 +08:00
) -> str:
return await openai_complete_if_cache(
LLM_MODEL,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=APIKEY,
base_url=BASE_URL,
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
2024-11-11 16:37:24 +08:00
texts,
model=EMBEDDING_MODEL,
api_key=APIKEY,
base_url=BASE_URL,
)
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim
2024-11-25 13:40:38 +08:00
2024-11-11 16:37:24 +08:00
async def init():
# Detect embedding dimension
embedding_dimension = await get_embedding_dim()
2024-11-11 16:37:24 +08:00
print(f"Detected embedding dimension: {embedding_dimension}")
# Create Oracle DB connection
# The `config` parameter is the connection configuration of Oracle DB
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
# Initialize LightRAG
2024-11-25 13:40:38 +08:00
# We use Oracle DB as the KV/vector/graph storage
2024-11-11 16:37:24 +08:00
rag = LightRAG(
2024-11-25 13:40:38 +08:00
enable_llm_cache=False,
working_dir=WORKING_DIR,
chunk_token_size=512,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=512,
func=embedding_func,
),
graph_storage="OracleGraphStorage",
kv_storage="OracleKVStorage",
vector_storage="OracleVectorDBStorage",
)
2024-11-11 16:37:24 +08:00
return rag
2024-11-12 13:32:40 +08:00
2024-11-25 13:29:55 +08:00
# Extract and Insert into LightRAG storage
2024-11-25 13:40:38 +08:00
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
2024-11-25 13:29:55 +08:00
# await rag.ainsert(f.read())
# # Perform search in different modes
# modes = ["naive", "local", "global", "hybrid"]
# for mode in modes:
# print("="*20, mode, "="*20)
# print(await rag.aquery("这篇文档是关于什么内容的?", param=QueryParam(mode=mode)))
# print("-"*100, "\n")
2024-11-11 16:37:24 +08:00
# Data models
class QueryRequest(BaseModel):
query: str
mode: str = "hybrid"
only_need_context: bool = False
2024-11-25 13:29:55 +08:00
only_need_prompt: bool = False
2024-11-11 16:37:24 +08:00
2024-11-25 13:40:38 +08:00
2024-11-25 13:29:55 +08:00
class DataRequest(BaseModel):
limit: int = 100
2024-11-11 16:37:24 +08:00
2024-11-25 13:40:38 +08:00
2024-11-11 16:37:24 +08:00
class InsertRequest(BaseModel):
text: str
class Response(BaseModel):
status: str
2024-11-25 13:29:55 +08:00
data: Optional[Any] = None
2024-11-11 16:37:24 +08:00
message: Optional[str] = None
# API routes
2024-11-12 15:38:16 +08:00
rag = None
2024-11-11 16:37:24 +08:00
2024-11-25 13:40:38 +08:00
2024-11-11 16:37:24 +08:00
@asynccontextmanager
async def lifespan(app: FastAPI):
global rag
2024-11-12 15:38:16 +08:00
rag = await init()
2024-11-11 16:37:24 +08:00
print("done!")
yield
2024-11-25 13:40:38 +08:00
app = FastAPI(
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
)
2024-11-11 16:37:24 +08:00
@app.post("/query", response_model=Response)
async def query_endpoint(request: QueryRequest):
2024-11-25 13:40:38 +08:00
# try:
# loop = asyncio.get_event_loop()
2024-11-25 13:29:55 +08:00
if request.mode == "naive":
top_k = 3
else:
top_k = 60
result = await rag.aquery(
2024-11-25 13:40:38 +08:00
request.query,
param=QueryParam(
mode=request.mode,
only_need_context=request.only_need_context,
only_need_prompt=request.only_need_prompt,
top_k=top_k,
),
)
2024-11-25 13:29:55 +08:00
return Response(status="success", data=result)
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
@app.get("/data", response_model=Response)
async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)):
if type == "nodes":
2024-11-25 13:40:38 +08:00
result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit)
2024-11-25 13:29:55 +08:00
elif type == "edges":
2024-11-25 13:40:38 +08:00
result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit)
2024-11-25 13:29:55 +08:00
elif type == "statistics":
result = await rag.chunk_entity_relation_graph.get_statistics()
return Response(status="success", data=result)
2024-11-11 16:37:24 +08:00
@app.post("/insert", response_model=Response)
async def insert_endpoint(request: InsertRequest):
try:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(request.text))
return Response(status="success", message="Text inserted successfully")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/insert_file", response_model=Response)
async def insert_file(file: UploadFile = File(...)):
try:
file_content = await file.read()
# Read file content
try:
content = file_content.decode("utf-8")
except UnicodeDecodeError:
# If UTF-8 decoding fails, try other encodings
content = file_content.decode("gbk")
# Insert file content
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(content))
return Response(
status="success",
message=f"File content from {file.filename} inserted successfully",
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
return {"status": "healthy"}
if __name__ == "__main__":
import uvicorn
2024-11-25 13:29:55 +08:00
uvicorn.run(app, host="127.0.0.1", port=8020)
2024-11-11 16:37:24 +08:00
# Usage example
# To run the server, use the following command in your terminal:
# python lightrag_api_openai_compatible_demo.py
# Example requests:
# 1. Query:
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
# 2. Insert text:
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
# 3. Insert file:
2025-02-12 14:04:02 +08:00
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt"
2024-11-11 16:37:24 +08:00
# 4. Health check:
2024-11-25 13:40:38 +08:00
# curl -X GET "http://127.0.0.1:8020/health"