LightRAG/lightrag/api/lightrag_server.py

1061 lines
37 KiB
Python
Raw Normal View History

from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import lollms_model_complete, lollms_embed
2025-01-10 20:30:58 +01:00
from lightrag.llm import ollama_model_complete, ollama_embed
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
from lightrag.api import __api_version__
2025-01-10 20:30:58 +01:00
from lightrag.utils import EmbeddingFunc
2025-01-16 23:22:57 +01:00
from typing import Optional, List, Union, Any
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception, ASCIIColors
import os
2025-01-04 02:23:39 +01:00
from fastapi import Depends, Security
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from starlette.status import HTTP_403_FORBIDDEN
2025-01-14 23:08:39 +01:00
import pipmaster as pm
2025-01-04 02:23:39 +01:00
2025-01-17 02:34:29 +01:00
from dotenv import load_dotenv
2025-01-11 01:37:07 +01:00
2025-01-10 20:30:58 +01:00
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": "http://localhost:11434",
"lollms": "http://localhost:9600",
"azure_openai": "https://api.openai.com/v1",
2025-01-11 01:37:07 +01:00
"openai": "https://api.openai.com/v1",
2025-01-10 20:30:58 +01:00
}
2025-01-11 01:37:07 +01:00
return default_hosts.get(
binding_type, "http://localhost:11434"
) # fallback to ollama if unknown
2025-01-17 01:36:16 +01:00
def get_env_value(env_key: str, default: Any, value_type: type = str) -> Any:
"""
Get value from environment variable with type conversion
2025-01-17 01:36:16 +01:00
Args:
env_key (str): Environment variable key
default (Any): Default value if env variable is not set
value_type (type): Type to convert the value to
2025-01-17 01:36:16 +01:00
Returns:
Any: Converted value from environment or default
"""
value = os.getenv(env_key)
if value is None:
return default
2025-01-17 01:36:16 +01:00
2025-01-17 02:34:29 +01:00
if isinstance(value_type, bool):
2025-01-17 01:36:16 +01:00
return value.lower() in ("true", "1", "yes")
try:
return value_type(value)
except ValueError:
return default
2025-01-17 01:36:16 +01:00
def display_splash_screen(args: argparse.Namespace) -> None:
"""
Display a colorful splash screen showing LightRAG server configuration
2025-01-17 01:36:16 +01:00
Args:
args: Parsed command line arguments
"""
# Banner
ASCIIColors.cyan(f"""
🚀 LightRAG Server v{__api_version__}
Fast, Lightweight RAG Server Implementation
""")
# Server Configuration
ASCIIColors.magenta("\n📡 Server Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Port: ", end="")
ASCIIColors.yellow(f"{args.port}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
ASCIIColors.yellow(f"{args.ssl}")
if args.ssl:
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ SSL Cert: ", end="")
ASCIIColors.yellow(f"{args.ssl_certfile}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ SSL Key: ", end="")
ASCIIColors.yellow(f"{args.ssl_keyfile}")
# Directory Configuration
ASCIIColors.magenta("\n📂 Directory Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Working Directory: ", end="")
ASCIIColors.yellow(f"{args.working_dir}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Input Directory: ", end="")
ASCIIColors.yellow(f"{args.input_dir}")
# LLM Configuration
ASCIIColors.magenta("\n🤖 LLM Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.llm_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.llm_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Model: ", end="")
ASCIIColors.yellow(f"{args.llm_model}")
# Embedding Configuration
ASCIIColors.magenta("\n📊 Embedding Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Binding: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Host: ", end="")
ASCIIColors.yellow(f"{args.embedding_binding_host}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Model: ", end="")
ASCIIColors.yellow(f"{args.embedding_model}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Dimensions: ", end="")
ASCIIColors.yellow(f"{args.embedding_dim}")
# RAG Configuration
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
ASCIIColors.yellow(f"{args.max_async}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Max Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_tokens}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ Max Embed Tokens: ", end="")
ASCIIColors.yellow(f"{args.max_embed_tokens}")
# System Configuration
ASCIIColors.magenta("\n🛠️ System Configuration:")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Log Level: ", end="")
ASCIIColors.yellow(f"{args.log_level}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" ├─ Timeout: ", end="")
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
2025-01-17 01:36:16 +01:00
ASCIIColors.white(" └─ API Key: ", end="")
ASCIIColors.yellow("Set" if args.key else "Not Set")
# Server Status
ASCIIColors.green("\n✨ Server starting up...\n")
2025-01-17 00:54:24 +01:00
# Server Access Information
protocol = "https" if args.ssl else "http"
if args.host == "0.0.0.0":
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Local Access: ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
ASCIIColors.white(" ├─ Remote Access: ", end="")
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
ASCIIColors.white(" └─ Alternative Documentation (local): ", end="")
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.yellow("\n📝 Note:")
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
- Use 'localhost' or '127.0.0.1' for local access
- Use your machine's IP address for remote access
- To find your IP address:
Windows: Run 'ipconfig' in terminal
Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
""")
else:
base_url = f"{protocol}://{args.host}:{args.port}"
ASCIIColors.magenta("\n🌐 Server Access Information:")
ASCIIColors.white(" ├─ Base URL: ", end="")
ASCIIColors.yellow(f"{base_url}")
ASCIIColors.white(" ├─ API Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/docs")
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
ASCIIColors.yellow(f"{base_url}/redoc")
# Usage Examples
ASCIIColors.magenta("\n📚 Quick Start Guide:")
2025-01-17 01:36:16 +01:00
ASCIIColors.cyan("""
2025-01-17 00:54:24 +01:00
1. Access the Swagger UI:
Open your browser and navigate to the API documentation URL above
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
2. API Authentication:""")
if args.key:
ASCIIColors.cyan(""" Add the following header to your requests:
X-API-Key: <your-api-key>
""")
else:
ASCIIColors.cyan(" No authentication required\n")
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
ASCIIColors.cyan(""" 3. Basic Operations:
- POST /upload_document: Upload new documents to RAG
- POST /query: Query your document collection
- GET /collections: List available collections
2025-01-17 01:36:16 +01:00
2025-01-17 00:54:24 +01:00
4. Monitor the server:
- Check server logs for detailed operation information
- Use healthcheck endpoint: GET /health
""")
# Security Notice
if args.key:
ASCIIColors.yellow("\n⚠️ Security Notice:")
ASCIIColors.white(""" API Key authentication is enabled.
Make sure to include the X-API-Key header in all your requests.
""")
2025-01-17 01:36:16 +01:00
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
def parse_args() -> argparse.Namespace:
"""
Parse command line arguments with environment variable fallback
2025-01-17 01:36:16 +01:00
Returns:
argparse.Namespace: Parsed arguments
"""
# Load environment variables from .env file
load_dotenv()
2025-01-17 01:36:16 +01:00
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Bindings (with env var support)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-binding",
default=get_env_value("LLM_BINDING", "ollama"),
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
parser.add_argument(
"--embedding-binding",
default=get_env_value("EMBEDDING_BINDING", "ollama"),
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
2025-01-10 20:30:58 +01:00
)
2025-01-11 01:37:07 +01:00
# Parse temporary args for host defaults
2025-01-10 20:30:58 +01:00
temp_args, _ = parser.parse_known_args()
# Server configuration
parser.add_argument(
"--host",
default=get_env_value("HOST", "0.0.0.0"),
2025-01-17 01:36:16 +01:00
help="Server host (default: from env or 0.0.0.0)",
)
parser.add_argument(
"--port",
type=int,
default=get_env_value("PORT", 9621, int),
2025-01-17 01:36:16 +01:00
help="Server port (default: from env or 9621)",
)
# Directory configuration
parser.add_argument(
"--working-dir",
default=get_env_value("WORKING_DIR", "./rag_storage"),
help="Working directory for RAG storage (default: from env or ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default=get_env_value("INPUT_DIR", "./inputs"),
help="Directory containing input documents (default: from env or ./inputs)",
)
2025-01-10 20:30:58 +01:00
# LLM Model configuration
2025-01-17 01:36:16 +01:00
default_llm_host = get_env_value(
"LLM_BINDING_HOST", get_default_host(temp_args.llm_binding)
)
parser.add_argument(
2025-01-10 20:30:58 +01:00
"--llm-binding-host",
default=default_llm_host,
help=f"llm server host URL (default: from env or {default_llm_host})",
2025-01-10 20:30:58 +01:00
)
2025-01-17 11:18:45 +01:00
default_llm_api_key = get_env_value(
"LLM_BINDING_API_KEY", ""
)
parser.add_argument(
"--llm-binding-api-key",
default=default_llm_api_key,
help=f"llm server API key (default: from env or empty string)",
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--llm-model",
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
help="LLM model name (default: from env or mistral-nemo:latest)",
)
2025-01-10 20:30:58 +01:00
# Embedding model configuration
2025-01-17 01:36:16 +01:00
default_embedding_host = get_env_value(
"EMBEDDING_BINDING_HOST", get_default_host(temp_args.embedding_binding)
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--embedding-binding-host",
default=default_embedding_host,
help=f"embedding server host URL (default: from env or {default_embedding_host})",
2025-01-10 20:30:58 +01:00
)
2025-01-17 11:18:45 +01:00
default_embedding_api_key = get_env_value(
"EMBEDDING_BINDING_API_KEY", ""
)
parser.add_argument(
"--embedding-binding-api-key",
default=default_embedding_api_key,
help=f"embedding server API key (default: from env or empty string)",
)
2025-01-10 20:30:58 +01:00
parser.add_argument(
"--embedding-model",
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
help="Embedding model name (default: from env or bge-m3:latest)",
)
2025-01-10 22:17:13 +01:00
def timeout_type(value):
if value is None or value == "None":
return None
return int(value)
2025-01-10 21:39:25 +01:00
parser.add_argument(
"--timeout",
default=get_env_value("TIMEOUT", None, timeout_type),
2025-01-10 22:17:13 +01:00
type=timeout_type,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
2025-01-10 21:39:25 +01:00
)
# RAG configuration
parser.add_argument(
"--max-async",
type=int,
default=get_env_value("MAX_ASYNC", 4, int),
2025-01-17 01:36:16 +01:00
help="Maximum async operations (default: from env or 4)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=get_env_value("MAX_TOKENS", 32768, int),
help="Maximum token size (default: from env or 32768)",
)
parser.add_argument(
"--embedding-dim",
type=int,
default=get_env_value("EMBEDDING_DIM", 1024, int),
help="Embedding dimensions (default: from env or 1024)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
help="Maximum embedding token size (default: from env or 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default=get_env_value("LOG_LEVEL", "INFO"),
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: from env or INFO)",
)
2025-01-04 02:23:39 +01:00
parser.add_argument(
"--key",
type=str,
default=get_env_value("LIGHTRAG_API_KEY", None),
2025-01-04 02:23:39 +01:00
help="API key for authentication. This protects lightrag server against unauthorized access",
)
2025-01-10 21:39:25 +01:00
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
default=get_env_value("SSL", False, bool),
2025-01-17 01:36:16 +01:00
help="Enable HTTPS (default: from env or False)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-certfile",
default=get_env_value("SSL_CERTFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL certificate file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
parser.add_argument(
"--ssl-keyfile",
default=get_env_value("SSL_KEYFILE", None),
2025-01-11 01:37:07 +01:00
help="Path to SSL private key file (required if --ssl is enabled)",
2025-01-10 21:39:25 +01:00
)
args = parser.parse_args()
display_splash_screen(args)
return args
class DocumentManager:
"""Handles document operations and tracking"""
2025-01-14 23:11:23 +01:00
def __init__(
self,
input_dir: str,
supported_extensions: tuple = (".txt", ".md", ".pdf", ".docx", ".pptx"),
):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
only_need_context: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
2025-01-04 02:23:39 +01:00
def get_api_key_dependency(api_key: Optional[str]):
if not api_key:
# If no API key is configured, return a dummy dependency that always succeeds
async def no_auth():
return None
2025-01-04 02:23:39 +01:00
return no_auth
2025-01-04 02:23:39 +01:00
# If API key is configured, use proper authentication
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
2025-01-04 02:23:39 +01:00
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
if not api_key_header_value:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
)
if api_key_header_value != api_key:
raise HTTPException(
2025-01-04 02:23:39 +01:00
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
)
return api_key_header_value
2025-01-04 02:23:39 +01:00
return api_key_auth
def create_app(args):
2025-01-10 20:30:58 +01:00
# Verify that bindings arer correctly setup
if args.llm_binding not in ["lollms", "ollama", "openai"]:
raise Exception("llm binding not supported")
if args.embedding_binding not in ["lollms", "ollama", "openai"]:
raise Exception("embedding binding not supported")
2025-01-11 01:35:49 +01:00
# Add SSL validation
if args.ssl:
if not args.ssl_certfile or not args.ssl_keyfile:
2025-01-11 01:37:07 +01:00
raise Exception(
"SSL certificate and key files must be provided when SSL is enabled"
)
2025-01-11 01:35:49 +01:00
if not os.path.exists(args.ssl_certfile):
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
if not os.path.exists(args.ssl_keyfile):
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
2025-01-11 01:37:07 +01:00
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Check if API key is provided either through env var or args
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
2025-01-04 02:23:39 +01:00
# Initialize FastAPI
app = FastAPI(
title="LightRAG API",
2025-01-04 02:23:39 +01:00
description="API for querying text using LightRAG with separate storage and input directories"
+ "(With authentication)"
if api_key
else "",
2025-01-14 23:08:39 +01:00
version="1.0.2",
2025-01-04 02:23:39 +01:00
openapi_tags=[{"name": "api"}],
)
2025-01-04 02:23:39 +01:00
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create the optional API key dependency
optional_api_key = get_api_key_dependency(api_key)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Initialize RAG
rag = LightRAG(
working_dir=args.working_dir,
2025-01-11 01:37:07 +01:00
llm_model_func=lollms_model_complete
if args.llm_binding == "lollms"
else ollama_model_complete
if args.llm_binding == "ollama"
else azure_openai_complete_if_cache
if args.llm_binding == "azure_openai"
else openai_complete_if_cache,
2025-01-10 20:30:58 +01:00
llm_model_name=args.llm_model,
llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens,
llm_model_kwargs={
2025-01-10 20:30:58 +01:00
"host": args.llm_binding_host,
2025-01-11 01:37:07 +01:00
"timeout": args.timeout,
"options": {"num_ctx": args.max_tokens},
},
embedding_func=EmbeddingFunc(
embedding_dim=args.embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: lollms_embed(
2025-01-11 01:37:07 +01:00
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
)
if args.llm_binding == "lollms"
else ollama_embed(
texts,
embed_model=args.embedding_model,
host=args.embedding_binding_host,
2025-01-10 20:30:58 +01:00
)
2025-01-11 01:37:07 +01:00
if args.llm_binding == "ollama"
else azure_openai_embedding(
texts,
model=args.embedding_model, # no host is used for openai
)
if args.llm_binding == "azure_openai"
else openai_embedding(
texts,
model=args.embedding_model, # no host is used for openai
),
),
)
2025-01-14 23:08:39 +01:00
async def index_file(file_path: Union[str, Path]) -> None:
2025-01-14 23:11:23 +01:00
"""Index all files inside the folder with support for multiple file formats
2025-01-14 23:08:39 +01:00
Args:
file_path: Path to the file to be indexed (str or Path object)
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
ValueError: If file format is not supported
FileNotFoundError: If file doesn't exist
"""
if not pm.is_installed("aiofiles"):
pm.install("aiofiles")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Convert to Path object if string
file_path = Path(file_path)
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Check if file exists
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
content = ""
# Get file extension in lowercase
ext = file_path.suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
# Text files handling
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# PDF handling
reader = PdfReader(str(file_path))
content = ""
for page in reader.pages:
content += page.extract_text() + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
# Word document handling
doc = Document(file_path)
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# PowerPoint handling
prs = Presentation(file_path)
content = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case _:
raise ValueError(f"Unsupported file format: {ext}")
# Insert content into RAG system
if content:
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Successfully indexed file: {file_path}")
else:
logging.warning(f"No content extracted from file: {file_path}")
2025-01-17 01:36:16 +01:00
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for startup and shutdown events"""
# Startup logic
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
2025-01-14 23:08:39 +01:00
await index_file(file_path)
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
2025-01-14 23:08:39 +01:00
await index_file(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
2025-01-14 23:08:39 +01:00
await index_file(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
2024-12-26 23:39:10 +01:00
param=QueryParam(
mode=request.mode,
stream=request.stream,
only_need_context=request.only_need_context,
),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
trace_exception(e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
2024-12-26 23:39:10 +01:00
request.query,
param=QueryParam(
mode=request.mode,
stream=True,
only_need_context=request.only_need_context,
),
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/text",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_text(request: InsertTextRequest):
try:
2025-01-12 12:56:08 +01:00
await rag.ainsert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=1,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/file",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
2025-01-14 23:08:39 +01:00
"""Insert a file directly into the RAG system
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
file: Uploaded file
description: Optional description of the file
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For unsupported file types or processing errors
"""
try:
2025-01-14 23:08:39 +01:00
content = ""
# Get file extension in lowercase
ext = Path(file.filename).suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
# Text files handling
text_content = await file.read()
content = text_content.decode("utf-8")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Read PDF from memory
pdf_content = await file.read()
pdf_file = BytesIO(pdf_content)
reader = PdfReader(pdf_file)
content = ""
for page in reader.pages:
content += page.extract_text() + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Read DOCX from memory
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
2025-01-14 23:11:23 +01:00
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
2025-01-14 23:08:39 +01:00
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
# Read PPTX from memory
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
content = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case _:
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
# Insert content into RAG system
if content:
# Add description if provided
if description:
content = f"{description}\n\n{content}"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
await rag.ainsert(content)
logging.info(f"Successfully indexed file: {file.filename}")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=1,
)
else:
raise HTTPException(
status_code=400,
2025-01-14 23:08:39 +01:00
detail="No content could be extracted from the file",
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
2025-01-14 23:08:39 +01:00
logging.error(f"Error processing file {file.filename}: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
2025-01-14 23:11:23 +01:00
2025-01-04 02:23:39 +01:00
@app.post(
"/documents/batch",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def insert_batch(files: List[UploadFile] = File(...)):
2025-01-14 23:08:39 +01:00
"""Process multiple files in batch mode
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Args:
files: List of files to process
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Returns:
InsertResponse: Status of the batch insertion operation
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
Raises:
HTTPException: For processing errors
"""
try:
inserted_count = 0
failed_files = []
for file in files:
try:
2025-01-14 23:08:39 +01:00
content = ""
ext = Path(file.filename).suffix.lower()
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
match ext:
case ".txt" | ".md":
text_content = await file.read()
content = text_content.decode("utf-8")
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".pdf":
if not pm.is_installed("pypdf2"):
pm.install("pypdf2")
from pypdf2 import PdfReader
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
pdf_content = await file.read()
pdf_file = BytesIO(pdf_content)
reader = PdfReader(pdf_file)
for page in reader.pages:
content += page.extract_text() + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case ".docx":
if not pm.is_installed("docx"):
pm.install("docx")
from docx import Document
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
docx_content = await file.read()
docx_file = BytesIO(docx_content)
doc = Document(docx_file)
2025-01-14 23:11:23 +01:00
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
2025-01-14 23:08:39 +01:00
case ".pptx":
if not pm.is_installed("pptx"):
pm.install("pptx")
from pptx import Presentation
from io import BytesIO
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
pptx_content = await file.read()
pptx_file = BytesIO(pptx_content)
prs = Presentation(pptx_file)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + "\n"
2025-01-14 23:11:23 +01:00
2025-01-14 23:08:39 +01:00
case _:
failed_files.append(f"{file.filename} (unsupported type)")
continue
if content:
await rag.ainsert(content)
inserted_count += 1
2025-01-14 23:08:39 +01:00
logging.info(f"Successfully indexed file: {file.filename}")
else:
2025-01-14 23:08:39 +01:00
failed_files.append(f"{file.filename} (no content extracted)")
except UnicodeDecodeError:
failed_files.append(f"{file.filename} (encoding error)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
2025-01-14 23:08:39 +01:00
logging.error(f"Error processing file {file.filename}: {str(e)}")
# Prepare status message
if inserted_count == len(files):
status = "success"
status_message = f"Successfully inserted all {inserted_count} documents"
elif inserted_count > 0:
status = "partial_success"
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
else:
status = "failure"
status_message = "No documents were successfully inserted"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
2025-01-14 23:08:39 +01:00
status=status,
message=status_message,
2025-01-14 23:08:39 +01:00
document_count=inserted_count,
)
2025-01-14 23:08:39 +01:00
except Exception as e:
2025-01-14 23:08:39 +01:00
logging.error(f"Batch processing error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
2025-01-04 02:23:39 +01:00
@app.delete(
"/documents",
response_model=InsertResponse,
dependencies=[Depends(optional_api_key)],
)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health", dependencies=[Depends(optional_api_key)])
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
2025-01-10 20:30:58 +01:00
# LLM configuration binding/host address (if applicable)/model (if applicable)
"llm_binding": args.llm_binding,
"llm_binding_host": args.llm_binding_host,
"llm_model": args.llm_model,
# embedding model configuration binding/host address (if applicable)/model (if applicable)
"embedding_binding": args.embedding_binding,
"embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
2025-01-11 01:35:49 +01:00
uvicorn_config = {
"app": app,
"host": args.host,
"port": args.port,
2025-01-11 01:37:07 +01:00
}
2025-01-11 01:35:49 +01:00
if args.ssl:
2025-01-11 01:37:07 +01:00
uvicorn_config.update(
{
"ssl_certfile": args.ssl_certfile,
"ssl_keyfile": args.ssl_keyfile,
}
)
2025-01-11 01:35:49 +01:00
uvicorn.run(**uvicorn_config)
2024-12-24 10:35:00 +01:00
if __name__ == "__main__":
main()