| 
									
										
										
										
											2024-12-19 17:47:42 +01:00
										 |  |  | import asyncio | 
					
						
							|  |  |  | import inspect | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-12-20 09:57:35 +01:00
										 |  |  | # Uncomment these lines below to filter out somewhat verbose INFO level | 
					
						
							|  |  |  | # logging prints (the default loglevel is INFO). | 
					
						
							|  |  |  | # This has to go before the lightrag imports to work, | 
					
						
							|  |  |  | # which triggers linting errors, so we keep it commented out: | 
					
						
							|  |  |  | # import logging | 
					
						
							|  |  |  | # logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN) | 
					
						
							| 
									
										
										
										
											2024-12-19 17:47:42 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | from lightrag import LightRAG, QueryParam | 
					
						
							|  |  |  | from lightrag.llm import ollama_embedding, ollama_model_complete | 
					
						
							|  |  |  | from lightrag.utils import EmbeddingFunc | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | WORKING_DIR = "./dickens_gremlin" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if not os.path.exists(WORKING_DIR): | 
					
						
							|  |  |  |     os.mkdir(WORKING_DIR) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Gremlin | 
					
						
							|  |  |  | os.environ["GREMLIN_HOST"] = "localhost" | 
					
						
							|  |  |  | os.environ["GREMLIN_PORT"] = "8182" | 
					
						
							|  |  |  | os.environ["GREMLIN_GRAPH"] = "dickens" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Creating a non-default source requires manual | 
					
						
							|  |  |  | # configuration and a restart on the server: use the dafault "g" | 
					
						
							|  |  |  | os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # No authorization by default on docker tinkerpop/gremlin-server | 
					
						
							|  |  |  | os.environ["GREMLIN_USER"] = "" | 
					
						
							|  |  |  | os.environ["GREMLIN_PASSWORD"] = "" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | rag = LightRAG( | 
					
						
							|  |  |  |     working_dir=WORKING_DIR, | 
					
						
							|  |  |  |     llm_model_func=ollama_model_complete, | 
					
						
							|  |  |  |     llm_model_name="llama3.1:8b", | 
					
						
							|  |  |  |     llm_model_max_async=4, | 
					
						
							|  |  |  |     llm_model_max_token_size=32768, | 
					
						
							|  |  |  |     llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}}, | 
					
						
							|  |  |  |     embedding_func=EmbeddingFunc( | 
					
						
							|  |  |  |         embedding_dim=768, | 
					
						
							|  |  |  |         max_token_size=8192, | 
					
						
							|  |  |  |         func=lambda texts: ollama_embedding( | 
					
						
							|  |  |  |             texts, embed_model="nomic-embed-text", host="http://localhost:11434" | 
					
						
							|  |  |  |         ), | 
					
						
							|  |  |  |     ), | 
					
						
							|  |  |  |     graph_storage="GremlinStorage", | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | with open("./book.txt", "r", encoding="utf-8") as f: | 
					
						
							|  |  |  |     rag.insert(f.read()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Perform naive search | 
					
						
							|  |  |  | print( | 
					
						
							|  |  |  |     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Perform local search | 
					
						
							|  |  |  | print( | 
					
						
							|  |  |  |     rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Perform global search | 
					
						
							|  |  |  | print( | 
					
						
							|  |  |  |     rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # Perform hybrid search | 
					
						
							|  |  |  | print( | 
					
						
							|  |  |  |     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # stream response | 
					
						
							|  |  |  | resp = rag.query( | 
					
						
							|  |  |  |     "What are the top themes in this story?", | 
					
						
							|  |  |  |     param=QueryParam(mode="hybrid", stream=True), | 
					
						
							|  |  |  | ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | async def print_stream(stream): | 
					
						
							|  |  |  |     async for chunk in stream: | 
					
						
							|  |  |  |         print(chunk, end="", flush=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if inspect.isasyncgen(resp): | 
					
						
							|  |  |  |     asyncio.run(print_stream(resp)) | 
					
						
							|  |  |  | else: | 
					
						
							|  |  |  |     print(resp) |