2024-12-16 01:05:49 +01:00
|
|
|
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
|
|
|
from fastapi.responses import JSONResponse
|
|
|
|
from pydantic import BaseModel
|
|
|
|
import asyncio
|
|
|
|
import os
|
|
|
|
import logging
|
|
|
|
import argparse
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
|
|
from lightrag.llm import ollama_model_complete, ollama_embedding
|
|
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
from typing import Optional, List
|
|
|
|
from enum import Enum
|
2024-12-17 23:36:30 +01:00
|
|
|
from pathlib import Path
|
|
|
|
import shutil
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(
|
2024-12-17 23:36:30 +01:00
|
|
|
description="LightRAG FastAPI Server with separate working and input directories"
|
2024-12-16 01:05:49 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Server configuration
|
|
|
|
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
|
|
|
|
parser.add_argument('--port', type=int, default=8000, help='Server port (default: 8000)')
|
|
|
|
|
2024-12-17 23:36:30 +01:00
|
|
|
# Directory configuration
|
|
|
|
parser.add_argument('--working-dir', default='./rag_storage',
|
|
|
|
help='Working directory for RAG storage (default: ./rag_storage)')
|
|
|
|
parser.add_argument('--input-dir', default='./inputs',
|
|
|
|
help='Directory containing input documents (default: ./inputs)')
|
|
|
|
|
2024-12-16 01:05:49 +01:00
|
|
|
# Model configuration
|
|
|
|
parser.add_argument('--model', default='gemma2:2b', help='LLM model name (default: gemma2:2b)')
|
2024-12-17 23:36:30 +01:00
|
|
|
parser.add_argument('--embedding-model', default='nomic-embed-text',
|
|
|
|
help='Embedding model name (default: nomic-embed-text)')
|
|
|
|
parser.add_argument('--ollama-host', default='http://localhost:11434',
|
|
|
|
help='Ollama host URL (default: http://localhost:11434)')
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
# RAG configuration
|
|
|
|
parser.add_argument('--max-async', type=int, default=4, help='Maximum async operations (default: 4)')
|
|
|
|
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
|
2024-12-17 23:36:30 +01:00
|
|
|
parser.add_argument('--embedding-dim', type=int, default=768,
|
|
|
|
help='Embedding dimensions (default: 768)')
|
|
|
|
parser.add_argument('--max-embed-tokens', type=int, default=8192,
|
|
|
|
help='Maximum embedding token size (default: 8192)')
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
# Logging configuration
|
2024-12-17 23:36:30 +01:00
|
|
|
parser.add_argument('--log-level', default='INFO',
|
|
|
|
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
|
|
|
|
help='Logging level (default: INFO)')
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
return parser.parse_args()
|
|
|
|
|
2024-12-17 23:36:30 +01:00
|
|
|
class DocumentManager:
|
|
|
|
"""Handles document operations and tracking"""
|
|
|
|
|
|
|
|
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
|
|
|
|
self.input_dir = Path(input_dir)
|
|
|
|
self.supported_extensions = supported_extensions
|
|
|
|
self.indexed_files = set()
|
|
|
|
|
|
|
|
# Create input directory if it doesn't exist
|
|
|
|
self.input_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
def scan_directory(self) -> List[Path]:
|
|
|
|
"""Scan input directory for new files"""
|
|
|
|
new_files = []
|
|
|
|
for ext in self.supported_extensions:
|
|
|
|
for file_path in self.input_dir.rglob(f'*{ext}'):
|
|
|
|
if file_path not in self.indexed_files:
|
|
|
|
new_files.append(file_path)
|
|
|
|
return new_files
|
|
|
|
|
|
|
|
def mark_as_indexed(self, file_path: Path):
|
|
|
|
"""Mark a file as indexed"""
|
|
|
|
self.indexed_files.add(file_path)
|
|
|
|
|
|
|
|
def is_supported_file(self, filename: str) -> bool:
|
|
|
|
"""Check if file type is supported"""
|
|
|
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
|
|
|
|
2024-12-16 01:05:49 +01:00
|
|
|
# Pydantic models
|
|
|
|
class SearchMode(str, Enum):
|
|
|
|
naive = "naive"
|
|
|
|
local = "local"
|
|
|
|
global_ = "global"
|
|
|
|
hybrid = "hybrid"
|
|
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
|
|
query: str
|
|
|
|
mode: SearchMode = SearchMode.hybrid
|
|
|
|
stream: bool = False
|
|
|
|
|
|
|
|
class QueryResponse(BaseModel):
|
|
|
|
response: str
|
|
|
|
|
|
|
|
class InsertTextRequest(BaseModel):
|
|
|
|
text: str
|
|
|
|
description: Optional[str] = None
|
|
|
|
|
|
|
|
class InsertResponse(BaseModel):
|
|
|
|
status: str
|
|
|
|
message: str
|
|
|
|
document_count: int
|
|
|
|
|
|
|
|
def create_app(args):
|
|
|
|
# Setup logging
|
|
|
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
|
|
|
|
|
|
|
|
# Initialize FastAPI app
|
|
|
|
app = FastAPI(
|
|
|
|
title="LightRAG API",
|
2024-12-17 23:36:30 +01:00
|
|
|
description="API for querying text using LightRAG with separate storage and input directories"
|
2024-12-16 01:05:49 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
# Create working directory if it doesn't exist
|
2024-12-17 23:36:30 +01:00
|
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
# Initialize document manager
|
|
|
|
doc_manager = DocumentManager(args.input_dir)
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
# Initialize RAG
|
|
|
|
rag = LightRAG(
|
|
|
|
working_dir=args.working_dir,
|
|
|
|
llm_model_func=ollama_model_complete,
|
|
|
|
llm_model_name=args.model,
|
|
|
|
llm_model_max_async=args.max_async,
|
|
|
|
llm_model_max_token_size=args.max_tokens,
|
|
|
|
llm_model_kwargs={"host": args.ollama_host, "options": {"num_ctx": args.max_tokens}},
|
|
|
|
embedding_func=EmbeddingFunc(
|
|
|
|
embedding_dim=args.embedding_dim,
|
|
|
|
max_token_size=args.max_embed_tokens,
|
|
|
|
func=lambda texts: ollama_embedding(
|
|
|
|
texts, embed_model=args.embedding_model, host=args.ollama_host
|
|
|
|
),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
@app.on_event("startup")
|
|
|
|
async def startup_event():
|
2024-12-17 23:36:30 +01:00
|
|
|
"""Index all files in input directory during startup"""
|
|
|
|
try:
|
|
|
|
new_files = doc_manager.scan_directory()
|
|
|
|
for file_path in new_files:
|
|
|
|
try:
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
content = f.read()
|
|
|
|
rag.insert(content)
|
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
logging.info(f"Indexed file: {file_path}")
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
|
|
|
|
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error during startup indexing: {str(e)}")
|
|
|
|
|
|
|
|
@app.post("/documents/scan")
|
|
|
|
async def scan_for_new_documents():
|
|
|
|
"""Manually trigger scanning for new documents"""
|
2024-12-16 01:05:49 +01:00
|
|
|
try:
|
2024-12-17 23:36:30 +01:00
|
|
|
new_files = doc_manager.scan_directory()
|
|
|
|
indexed_count = 0
|
|
|
|
|
|
|
|
for file_path in new_files:
|
|
|
|
try:
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
content = f.read()
|
|
|
|
rag.insert(content)
|
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
indexed_count += 1
|
|
|
|
except Exception as e:
|
|
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
|
|
|
|
return {
|
|
|
|
"status": "success",
|
|
|
|
"indexed_count": indexed_count,
|
|
|
|
"total_documents": len(doc_manager.indexed_files)
|
|
|
|
}
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/documents/upload")
|
|
|
|
async def upload_to_input_dir(file: UploadFile = File(...)):
|
|
|
|
"""Upload a file to the input directory"""
|
|
|
|
try:
|
|
|
|
if not doc_manager.is_supported_file(file.filename):
|
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
|
|
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
|
|
|
)
|
|
|
|
|
|
|
|
file_path = doc_manager.input_dir / file.filename
|
|
|
|
with open(file_path, "wb") as buffer:
|
|
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
|
|
|
# Immediately index the uploaded file
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
|
|
content = f.read()
|
|
|
|
rag.insert(content)
|
|
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
|
|
|
|
return {
|
|
|
|
"status": "success",
|
|
|
|
"message": f"File uploaded and indexed: {file.filename}",
|
|
|
|
"total_documents": len(doc_manager.indexed_files)
|
|
|
|
}
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
2024-12-16 01:05:49 +01:00
|
|
|
|
|
|
|
@app.post("/query", response_model=QueryResponse)
|
|
|
|
async def query_text(request: QueryRequest):
|
|
|
|
try:
|
|
|
|
response = rag.query(
|
|
|
|
request.query,
|
|
|
|
param=QueryParam(mode=request.mode, stream=request.stream)
|
|
|
|
)
|
|
|
|
|
|
|
|
if request.stream:
|
|
|
|
result = ""
|
|
|
|
async for chunk in response:
|
|
|
|
result += chunk
|
|
|
|
return QueryResponse(response=result)
|
|
|
|
else:
|
|
|
|
return QueryResponse(response=response)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/query/stream")
|
|
|
|
async def query_text_stream(request: QueryRequest):
|
|
|
|
try:
|
|
|
|
response = rag.query(
|
|
|
|
request.query,
|
|
|
|
param=QueryParam(mode=request.mode, stream=True)
|
|
|
|
)
|
|
|
|
|
|
|
|
async def stream_generator():
|
|
|
|
async for chunk in response:
|
|
|
|
yield chunk
|
|
|
|
|
|
|
|
return stream_generator()
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/documents/text", response_model=InsertResponse)
|
|
|
|
async def insert_text(request: InsertTextRequest):
|
|
|
|
try:
|
|
|
|
rag.insert(request.text)
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message="Text successfully inserted",
|
|
|
|
document_count=len(rag)
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/documents/file", response_model=InsertResponse)
|
|
|
|
async def insert_file(
|
|
|
|
file: UploadFile = File(...),
|
|
|
|
description: str = Form(None)
|
|
|
|
):
|
|
|
|
try:
|
|
|
|
content = await file.read()
|
|
|
|
|
|
|
|
if file.filename.endswith(('.txt', '.md')):
|
|
|
|
text = content.decode('utf-8')
|
|
|
|
rag.insert(text)
|
|
|
|
else:
|
|
|
|
raise HTTPException(
|
|
|
|
status_code=400,
|
|
|
|
detail="Unsupported file type. Only .txt and .md files are supported"
|
|
|
|
)
|
|
|
|
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message=f"File '{file.filename}' successfully inserted",
|
|
|
|
document_count=len(rag)
|
|
|
|
)
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
raise HTTPException(status_code=400, detail="File encoding not supported")
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.post("/documents/batch", response_model=InsertResponse)
|
|
|
|
async def insert_batch(files: List[UploadFile] = File(...)):
|
|
|
|
try:
|
|
|
|
inserted_count = 0
|
|
|
|
failed_files = []
|
|
|
|
|
|
|
|
for file in files:
|
|
|
|
try:
|
|
|
|
content = await file.read()
|
|
|
|
if file.filename.endswith(('.txt', '.md')):
|
|
|
|
text = content.decode('utf-8')
|
|
|
|
rag.insert(text)
|
|
|
|
inserted_count += 1
|
|
|
|
else:
|
|
|
|
failed_files.append(f"{file.filename} (unsupported type)")
|
|
|
|
except Exception as e:
|
|
|
|
failed_files.append(f"{file.filename} ({str(e)})")
|
|
|
|
|
|
|
|
status_message = f"Successfully inserted {inserted_count} documents"
|
|
|
|
if failed_files:
|
|
|
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
|
|
|
|
|
|
|
return InsertResponse(
|
|
|
|
status="success" if inserted_count > 0 else "partial_success",
|
|
|
|
message=status_message,
|
|
|
|
document_count=len(rag)
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
@app.delete("/documents", response_model=InsertResponse)
|
|
|
|
async def clear_documents():
|
|
|
|
try:
|
|
|
|
rag.text_chunks = []
|
|
|
|
rag.entities_vdb = None
|
|
|
|
rag.relationships_vdb = None
|
|
|
|
return InsertResponse(
|
|
|
|
status="success",
|
|
|
|
message="All documents cleared successfully",
|
|
|
|
document_count=0
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
2024-12-17 23:36:30 +01:00
|
|
|
|
|
|
|
@app.get("/status")
|
|
|
|
async def get_status():
|
|
|
|
"""Get current system status"""
|
2024-12-16 01:05:49 +01:00
|
|
|
return {
|
|
|
|
"status": "healthy",
|
2024-12-17 23:36:30 +01:00
|
|
|
"working_directory": str(args.working_dir),
|
|
|
|
"input_directory": str(args.input_dir),
|
|
|
|
"indexed_files": len(doc_manager.indexed_files),
|
2024-12-16 01:05:49 +01:00
|
|
|
"configuration": {
|
|
|
|
"model": args.model,
|
|
|
|
"embedding_model": args.embedding_model,
|
|
|
|
"max_tokens": args.max_tokens,
|
|
|
|
"ollama_host": args.ollama_host
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return app
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parse_args()
|
|
|
|
import uvicorn
|
|
|
|
app = create_app(args)
|
|
|
|
uvicorn.run(app, host=args.host, port=args.port)
|