2025-01-22 16:42:13 +08:00
|
|
|
|
import os
|
|
|
|
|
from lightrag import LightRAG, QueryParam
|
2025-01-25 00:11:00 +01:00
|
|
|
|
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
2025-01-22 16:42:13 +08:00
|
|
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
|
|
|
|
|
|
# WorkingDir
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
|
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
print(f"WorkingDir: {WORKING_DIR}")
|
|
|
|
|
|
|
|
|
|
# redis
|
|
|
|
|
os.environ["REDIS_URI"] = "redis://localhost:6379"
|
|
|
|
|
|
|
|
|
|
# neo4j
|
|
|
|
|
BATCH_SIZE_NODES = 500
|
|
|
|
|
BATCH_SIZE_EDGES = 100
|
|
|
|
|
os.environ["NEO4J_URI"] = "bolt://117.50.173.35:7687"
|
|
|
|
|
os.environ["NEO4J_USERNAME"] = "neo4j"
|
|
|
|
|
os.environ["NEO4J_PASSWORD"] = "12345678"
|
|
|
|
|
|
|
|
|
|
# milvus
|
|
|
|
|
os.environ["MILVUS_URI"] = "http://117.50.173.35:19530"
|
|
|
|
|
os.environ["MILVUS_USER"] = "root"
|
|
|
|
|
os.environ["MILVUS_PASSWORD"] = "Milvus"
|
|
|
|
|
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def llm_model_func(
|
|
|
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
|
|
|
) -> str:
|
|
|
|
|
return await openai_complete_if_cache(
|
|
|
|
|
"deepseek-chat",
|
|
|
|
|
prompt,
|
|
|
|
|
system_prompt=system_prompt,
|
|
|
|
|
history_messages=history_messages,
|
|
|
|
|
api_key="sk-91d0b59f25554251aa813ed756d79a6d",
|
|
|
|
|
base_url="https://api.deepseek.com",
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embedding_func = EmbeddingFunc(
|
|
|
|
|
embedding_dim=768,
|
|
|
|
|
max_token_size=512,
|
|
|
|
|
func=lambda texts: ollama_embed(
|
|
|
|
|
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
rag = LightRAG(
|
|
|
|
|
working_dir=WORKING_DIR,
|
|
|
|
|
llm_model_func=llm_model_func,
|
|
|
|
|
llm_model_max_token_size=32768,
|
|
|
|
|
embedding_func=embedding_func,
|
|
|
|
|
chunk_token_size=512,
|
|
|
|
|
chunk_overlap_token_size=256,
|
|
|
|
|
kv_storage="RedisKVStorage",
|
|
|
|
|
graph_storage="Neo4JStorage",
|
|
|
|
|
vector_storage="MilvusVectorDBStorge",
|
|
|
|
|
doc_status_storage="RedisKVStorage",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
file = "../book.txt"
|
|
|
|
|
with open(file, "r", encoding="utf-8") as f:
|
|
|
|
|
rag.insert(f.read())
|
|
|
|
|
|
2025-01-22 16:56:40 +08:00
|
|
|
|
|
2025-01-22 16:42:13 +08:00
|
|
|
|
print(rag.query("谁会3D建模 ?", param=QueryParam(mode="mix")))
|