LightRAG/lightrag/storage.py

461 lines
16 KiB
Python
Raw Normal View History

2024-10-10 15:02:30 +08:00
import asyncio
import html
import os
2024-11-25 15:04:38 +08:00
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
from typing import Any, Union, cast, Dict
2024-10-10 15:02:30 +08:00
import networkx as nx
import numpy as np
2024-10-10 15:02:30 +08:00
from nano_vectordb import NanoVectorDB
import time
2024-10-10 15:02:30 +08:00
2024-11-11 17:48:40 +08:00
from .utils import (
2024-11-11 17:54:22 +08:00
logger,
load_json,
2024-11-11 17:48:40 +08:00
write_json,
compute_mdhash_id,
)
2024-10-10 15:02:30 +08:00
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocStatus,
DocProcessingStatus,
DocStatusStorage,
2024-10-10 15:02:30 +08:00
)
2024-10-10 15:02:30 +08:00
@dataclass
class JsonKVStorage(BaseKVStorage):
def __post_init__(self):
working_dir = self.global_config["working_dir"]
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
self._data = load_json(self._file_name) or {}
2024-12-31 17:15:57 +08:00
self._lock = asyncio.Lock()
2024-10-10 15:02:30 +08:00
logger.info(f"Load KV {self.namespace} with {len(self._data)} data")
async def all_keys(self) -> list[str]:
return list(self._data.keys())
async def index_done_callback(self):
write_json(self._data, self._file_name)
async def get_by_id(self, id):
return self._data.get(id, None)
async def get_by_ids(self, ids, fields=None):
if fields is None:
return [self._data.get(id, None) for id in ids]
return [
(
{k: v for k, v in self._data[id].items() if k in fields}
if self._data.get(id, None)
else None
)
for id in ids
]
async def filter_keys(self, data: list[str]) -> set[str]:
return set([s for s in data if s not in self._data])
async def upsert(self, data: dict[str, dict]):
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
return left_data
async def drop(self):
self._data = {}
2024-12-31 17:15:57 +08:00
async def filter(self, filter_func):
"""Filter key-value pairs based on a filter function
Args:
filter_func: The filter function, which takes a value as an argument and returns a boolean value
Returns:
Dict: Key-value pairs that meet the condition
"""
result = {}
async with self._lock:
for key, value in self._data.items():
if filter_func(value):
result[key] = value
return result
async def delete(self, ids: list[str]):
"""Delete data with specified IDs
Args:
ids: List of IDs to delete
"""
async with self._lock:
for id in ids:
if id in self._data:
del self._data[id]
await self.index_done_callback()
logger.info(f"Successfully deleted {len(ids)} items from {self.namespace}")
2024-10-10 15:02:30 +08:00
@dataclass
class NanoVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
self._client_file_name = os.path.join(
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
)
self._max_batch_size = self.global_config["embedding_batch_num"]
self._client = NanoVectorDB(
self.embedding_func.embedding_dim, storage_file=self._client_file_name
)
self.cosine_better_than_threshold = self.global_config.get(
"cosine_better_than_threshold", self.cosine_better_than_threshold
)
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
current_time = time.time()
2024-10-10 15:02:30 +08:00
list_data = [
{
"__id__": k,
"__created_at__": current_time,
2024-10-10 15:02:30 +08:00
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
2024-12-13 16:48:22 +08:00
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
2024-12-13 20:15:49 +08:00
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
2024-12-13 16:48:22 +08:00
embeddings_list = await asyncio.gather(*embedding_tasks)
2024-10-10 15:02:30 +08:00
embeddings = np.concatenate(embeddings_list)
2024-12-10 09:00:22 +08:00
if len(embeddings) == len(list_data):
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
results = self._client.upsert(datas=list_data)
return results
else:
# sometimes the embedding is not returned correctly. just log it.
logger.error(
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}"
)
2024-10-10 15:02:30 +08:00
async def query(self, query: str, top_k=5):
embedding = await self.embedding_func([query])
embedding = embedding[0]
results = self._client.query(
query=embedding,
2024-10-10 15:02:30 +08:00
top_k=top_k,
better_than_threshold=self.cosine_better_than_threshold,
2024-10-10 15:02:30 +08:00
)
results = [
{
**dp,
"id": dp["__id__"],
"distance": dp["__metrics__"],
"created_at": dp.get("__created_at__"),
}
for dp in results
2024-10-10 15:02:30 +08:00
]
return results
2024-11-11 17:54:22 +08:00
2024-11-11 17:48:40 +08:00
@property
def client_storage(self):
return getattr(self._client, "_NanoVectorDB__storage")
2024-12-31 17:15:57 +08:00
async def delete(self, ids: list[str]):
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
2024-11-11 17:48:40 +08:00
try:
2024-12-31 17:15:57 +08:00
self._client.delete(ids)
2024-12-31 17:32:04 +08:00
logger.info(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
2024-12-31 17:15:57 +08:00
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
2024-11-11 17:54:22 +08:00
2024-12-31 17:15:57 +08:00
async def delete_entity(self, entity_name: str):
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
2024-12-31 17:32:04 +08:00
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
2024-12-31 17:15:57 +08:00
# Check if the entity exists
if self._client.get([entity_id]):
await self.delete([entity_id])
logger.debug(f"Successfully deleted entity {entity_name}")
2024-11-11 17:48:40 +08:00
else:
2024-12-31 17:15:57 +08:00
logger.debug(f"Entity {entity_name} not found in storage")
2024-11-11 17:48:40 +08:00
except Exception as e:
2024-12-31 17:15:57 +08:00
logger.error(f"Error deleting entity {entity_name}: {e}")
2024-11-11 17:54:22 +08:00
2024-12-31 17:15:57 +08:00
async def delete_entity_relation(self, entity_name: str):
2024-11-11 17:48:40 +08:00
try:
relations = [
2024-12-31 17:32:04 +08:00
dp
for dp in self.client_storage["data"]
2024-11-11 17:54:22 +08:00
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
2024-11-11 17:48:40 +08:00
]
2024-12-31 17:15:57 +08:00
logger.debug(f"Found {len(relations)} relations for entity {entity_name}")
2024-11-11 17:48:40 +08:00
ids_to_delete = [relation["__id__"] for relation in relations]
2024-12-31 17:32:04 +08:00
2024-11-11 17:48:40 +08:00
if ids_to_delete:
2024-12-31 17:15:57 +08:00
await self.delete(ids_to_delete)
2024-12-31 17:32:04 +08:00
logger.debug(
f"Deleted {len(ids_to_delete)} relations for {entity_name}"
)
2024-11-11 17:48:40 +08:00
else:
2024-12-31 17:15:57 +08:00
logger.debug(f"No relations found for entity {entity_name}")
2024-11-11 17:48:40 +08:00
except Exception as e:
2024-12-31 17:15:57 +08:00
logger.error(f"Error deleting relations for {entity_name}: {e}")
2024-10-10 15:02:30 +08:00
async def index_done_callback(self):
self._client.save()
2024-10-10 15:02:30 +08:00
2024-10-10 15:02:30 +08:00
@dataclass
class NetworkXStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name):
logger.info(
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
@staticmethod
def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
Return the largest connected component of the graph, with nodes and edges sorted in a stable way.
"""
from graspologic.utils import largest_connected_component
graph = graph.copy()
graph = cast(nx.Graph, largest_connected_component(graph))
node_mapping = {
node: html.unescape(node.upper().strip()) for node in graph.nodes()
} # type: ignore
2024-10-10 15:02:30 +08:00
graph = nx.relabel_nodes(graph, node_mapping)
return NetworkXStorage._stabilize_graph(graph)
@staticmethod
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
Ensure an undirected graph with the same relationships will always be read the same way.
"""
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
sorted_nodes = graph.nodes(data=True)
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
fixed_graph.add_nodes_from(sorted_nodes)
edges = list(graph.edges(data=True))
if not graph.is_directed():
def _sort_source_target(edge):
source, target, edge_data = edge
if source > target:
temp = source
source = target
target = temp
return source, target, edge_data
edges = [_sort_source_target(edge) for edge in edges]
def _get_edge_key(source: Any, target: Any) -> str:
return f"{source} -> {target}"
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
fixed_graph.add_edges_from(edges)
return fixed_graph
def __post_init__(self):
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
self._graph = preloaded_graph or nx.Graph()
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
async def index_done_callback(self):
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
async def has_node(self, node_id: str) -> bool:
return self._graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
return self._graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> Union[dict, None]:
return self._graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
return self._graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
return self._graph.degree(src_id) + self._graph.degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
return self._graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str):
if self._graph.has_node(source_node_id):
return list(self._graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
self._graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
self._graph.add_edge(source_node_id, target_node_id, **edge_data)
2024-11-11 17:48:40 +08:00
async def delete_node(self, node_id: str):
"""
Delete a node from the graph based on the specified node_id.
2024-11-11 17:54:22 +08:00
2024-11-11 17:48:40 +08:00
:param node_id: The node_id to delete
"""
if self._graph.has_node(node_id):
self._graph.remove_node(node_id)
logger.info(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
2024-10-10 15:02:30 +08:00
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
2024-11-06 11:18:14 -05:00
# @TODO: NOT USED
2024-10-10 15:02:30 +08:00
async def _node2vec_embed(self):
from graspologic import embed
2024-11-01 16:11:19 -04:00
2024-10-10 15:02:30 +08:00
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
2024-12-31 17:15:57 +08:00
def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node IDs to be deleted
"""
for node in nodes:
if self._graph.has_node(node):
self._graph.remove_node(node)
def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
for source, target in edges:
if self._graph.has_edge(source, target):
self._graph.remove_edge(source, target)
@dataclass
class JsonDocStatusStorage(DocStatusStorage):
"""JSON implementation of document status storage"""
def __post_init__(self):
working_dir = self.global_config["working_dir"]
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
self._data = load_json(self._file_name) or {}
logger.info(f"Loaded document status storage with {len(self._data)} records")
async def filter_keys(self, data: list[str]) -> set[str]:
"""Return keys that should be processed (not in storage or not successfully processed)"""
return set(
[
k
for k in data
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED
]
)
async def get_status_counts(self) -> Dict[str, int]:
"""Get counts of documents in each status"""
counts = {status: 0 for status in DocStatus}
for doc in self._data.values():
counts[doc["status"]] += 1
return counts
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
"""Get all failed documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED}
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
"""Get all pending documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING}
async def index_done_callback(self):
"""Save data to file after indexing"""
write_json(self._data, self._file_name)
async def upsert(self, data: dict[str, dict]):
"""Update or insert document status
Args:
data: Dictionary of document IDs and their status data
"""
self._data.update(data)
await self.index_done_callback()
return data
2024-12-31 17:15:57 +08:00
async def get_by_id(self, id: str):
return self._data.get(id)
2024-12-31 17:15:57 +08:00
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]:
"""Get document status by ID"""
return self._data.get(doc_id)
async def delete(self, doc_ids: list[str]):
"""Delete document status by IDs"""
for doc_id in doc_ids:
self._data.pop(doc_id, None)
2024-12-31 17:32:04 +08:00
await self.index_done_callback()