LightRAG/lightrag/llm/ollama.py

176 lines
5.0 KiB
Python
Raw Normal View History

"""
Ollama LLM Interface Module
==========================
This module provides interfaces for interacting with Ollama's language models,
including text generation and embedding capabilities.
Author: Lightrag team
Created: 2024-01-24
License: MIT License
Copyright (c) 2024 Lightrag
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Version: 1.0.0
Change Log:
- 1.0.0 (2024-01-24): Initial release
* Added async chat completion support
* Added embedding generation
* Added stream response capability
Dependencies:
- ollama
- numpy
- pipmaster
- Python >= 3.10
Usage:
from llm_interfaces.ollama_interface import ollama_model_complete, ollama_embed
"""
__version__ = "1.0.0"
__author__ = "lightrag Team"
__status__ = "Production"
import sys
if sys.version_info < (3, 9):
from typing import AsyncIterator
else:
from collections.abc import AsyncIterator
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed("ollama"):
pm.install("ollama")
if not pm.is_installed("tenacity"):
pm.install("tenacity")
import ollama
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from lightrag.exceptions import (
APIConnectionError,
RateLimitError,
APITimeoutError,
)
from lightrag.api import __api_version__
2025-02-06 22:56:17 +03:00
from lightrag.utils import extract_reasoning
import numpy as np
from typing import Union
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def ollama_model_if_cache(
model,
prompt,
system_prompt=None,
history_messages=[],
**kwargs,
) -> Union[str, AsyncIterator[str]]:
stream = True if kwargs.get("stream") else False
2025-02-06 22:56:17 +03:00
reasoning_tag = kwargs.pop("reasoning_tag", None)
kwargs.pop("max_tokens", None)
# kwargs.pop("response_format", None) # allow json
host = kwargs.pop("host", None)
timeout = kwargs.pop("timeout", None)
kwargs.pop("hashing_kv", None)
api_key = kwargs.pop("api_key", None)
headers = {
"Content-Type": "application/json",
"User-Agent": f"LightRAG/{__api_version__}",
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
if stream:
2025-02-06 22:56:17 +03:00
"""cannot cache stream response and process reasoning"""
async def inner():
async for chunk in response:
yield chunk["message"]["content"]
return inner()
else:
2025-02-06 22:56:17 +03:00
model_response = response["message"]["content"]
"""
If the model also wraps its thoughts in a specific tag,
this information is not needed for the final
response and can simply be trimmed.
"""
return (
model_response
if reasoning_tag is None
else extract_reasoning(model_response, reasoning_tag).response_content
)
async def ollama_model_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> Union[str, AsyncIterator[str]]:
keyword_extraction = kwargs.pop("keyword_extraction", None)
if keyword_extraction:
kwargs["format"] = "json"
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await ollama_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
"""
Deprecated in favor of `embed`.
"""
embed_text = []
ollama_client = ollama.Client(**kwargs)
for text in texts:
data = ollama_client.embeddings(model=embed_model, prompt=text)
embed_text.append(data["embedding"])
return embed_text
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
api_key = kwargs.pop("api_key", None)
headers = {
"Content-Type": "application/json",
"User-Agent": f"LightRAG/{__api_version__}",
}
if api_key:
headers["Authorization"] = api_key
kwargs["headers"] = headers
ollama_client = ollama.Client(**kwargs)
data = ollama_client.embed(model=embed_model, input=texts)
return data["embeddings"]