LightRAG/README.md

1033 lines
60 KiB
Markdown
Raw Normal View History

2024-10-15 23:57:57 +08:00
<center><h2>🚀 LightRAG: Simple and Fast Retrieval-Augmented Generation</h2></center>
2025-01-24 21:16:04 +01:00
<div align="center">
2025-01-24 21:15:47 +01:00
<table border="0" width="100%">
2025-01-24 21:08:46 +01:00
<tr>
2025-01-24 21:15:21 +01:00
<td width="100" align="center">
<img src="https://github.com/user-attachments/assets/cb5b8fc1-0859-4f7c-8ec3-63c8ec7aa54b" width="80" height="80" alt="lightrag">
2025-01-24 21:08:46 +01:00
</td>
2025-01-24 21:15:21 +01:00
<td>
2025-01-24 21:06:57 +01:00
<div>
2025-01-24 21:15:21 +01:00
<p>
2025-01-24 21:06:57 +01:00
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://youtu.be/oageL-1I0GE'><img src='https://badges.aleen42.com/src/youtube.svg'></a>
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
<a href='https://learnopencv.com/lightrag'><img src='https://img.shields.io/badge/LearnOpenCV-blue'></a>
2024-10-11 11:59:51 +08:00
</p>
2025-01-24 21:15:21 +01:00
<p>
2025-01-24 21:06:57 +01:00
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
<img src="https://img.shields.io/badge/python-3.10-blue">
<a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
<a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
2024-10-11 11:59:51 +08:00
</p>
2025-01-24 21:15:21 +01:00
<p>
2025-01-24 21:06:57 +01:00
<a href='https://discord.gg/yF2MmDJyGJ'><img src='https://discordapp.com/api/guilds/1296348098003734629/widget.png?style=shield'></a>
<a href='https://github.com/HKUDS/LightRAG/issues/285'><img src='https://img.shields.io/badge/群聊-wechat-green'></a>
2025-01-24 21:05:11 +01:00
</p>
2025-01-24 21:06:57 +01:00
</div>
2025-01-24 21:08:46 +01:00
</td>
</tr>
</table>
2025-01-24 21:05:11 +01:00
2025-01-24 21:08:46 +01:00
<div align="center">
This repository hosts the code of LightRAG. The structure of this code is based on <a href="https://github.com/gusye1234/nano-graphrag">nano-graphrag</a>.
2025-01-24 21:06:57 +01:00
2025-01-24 21:15:21 +01:00
<img src="https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png" width="800" alt="LightRAG Diagram">
2025-01-24 21:08:46 +01:00
</div>
2024-10-11 11:46:57 +08:00
</div>
## 🎉 News
2025-01-15 13:08:07 +08:00
- [x] [2025.01.13]🎯📢Our team has released [MiniRAG](https://github.com/HKUDS/MiniRAG) making RAG simpler with small models.
- [x] [2025.01.06]🎯📢You can now [use PostgreSQL for Storage](#using-postgresql-for-storage).
2024-12-31 17:25:57 +08:00
- [x] [2024.12.31]🎯📢LightRAG now supports [deletion by document ID](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
2024-11-25 18:18:04 +08:00
- [x] [2024.11.25]🎯📢LightRAG now supports seamless integration of [custom knowledge graphs](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#insert-custom-kg), empowering users to enhance the system with their own domain expertise.
- [x] [2024.11.19]🎯📢A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author.
2024-11-22 17:39:36 +08:00
- [x] [2024.11.12]🎯📢LightRAG now supports [Oracle Database 23ai for all storage types (KV, vector, and graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py).
2024-12-31 17:25:57 +08:00
- [x] [2024.11.11]🎯📢LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete).
2024-11-12 10:56:00 +08:00
- [x] [2024.11.09]🎯📢Introducing the [LightRAG Gui](https://lightrag-gui.streamlit.app), which allows you to insert, query, visualize, and download LightRAG knowledge.
- [x] [2024.11.04]🎯📢You can now [use Neo4J for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-neo4j-for-storage).
2024-10-30 10:49:59 +08:00
- [x] [2024.10.29]🎯📢LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
2025-01-24 21:05:11 +01:00
- [x] [2024.10.20]🎯📢We've added a new feature to LightRAG: Graph Visualization.
- [x] [2024.10.18]🎯📢We've added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
2024-11-21 10:56:15 +08:00
- [x] [2024.10.17]🎯📢We have created a [Discord channel](https://discord.gg/yF2MmDJyGJ)! Welcome to join for sharing and discussions! 🎉🎉
2024-10-30 10:49:59 +08:00
- [x] [2024.10.16]🎯📢LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
- [x] [2024.10.15]🎯📢LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
2024-10-29 16:36:04 +08:00
## Algorithm Flowchart
2025-01-25 14:39:09 +08:00
![LightRAG Indexing Flowchart](https://learnopencv.com/wp-content/uploads/2024/11/LightRAG-VectorDB-Json-KV-Store-Indexing-Flowchart-scaled.jpg)
*Figure 1: LightRAG Indexing Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*
![LightRAG Retrieval and Querying Flowchart](https://learnopencv.com/wp-content/uploads/2024/11/LightRAG-Querying-Flowchart-Dual-Level-Retrieval-Generation-Knowledge-Graphs-scaled.jpg)
*Figure 2: LightRAG Retrieval and Querying Flowchart - Img Caption : [Source](https://learnopencv.com/lightrag/)*
2024-10-15 19:55:30 +08:00
2024-10-10 15:02:30 +08:00
## Install
2024-10-17 10:29:08 +08:00
* Install from source (Recommend)
2024-10-10 15:02:30 +08:00
```bash
cd LightRAG
pip install -e .
```
* Install from PyPI
```bash
pip install lightrag-hku
```
## Quick Start
2024-10-21 21:10:19 +08:00
* [Video demo](https://www.youtube.com/watch?v=g21royNJ4fw) of running LightRAG locally.
2024-10-16 15:33:59 +08:00
* All the code can be found in the `examples`.
2024-10-15 19:55:30 +08:00
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens":
2024-10-10 15:02:30 +08:00
```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```
Use the below Python snippet (in a script) to initialize LightRAG and perform queries:
2024-10-10 15:02:30 +08:00
```python
import os
2024-10-10 15:02:30 +08:00
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete
2024-10-10 15:02:30 +08:00
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
2024-10-29 16:36:04 +08:00
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./dickens"
2024-10-15 19:55:30 +08:00
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
2024-10-10 15:02:30 +08:00
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
2024-10-15 19:40:08 +08:00
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
# Perform mix search (Knowledge Graph + Vector Retrieval)
# Mix mode combines knowledge graph and vector search:
# - Uses both structured (KG) and unstructured (vector) information
# - Provides comprehensive answers by analyzing relationships and context
# - Supports image content through HTML img tags
# - Allows control over retrieval depth via top_k parameter
print(rag.query("What are the top themes in this story?", param=QueryParam(
mode="mix")))
2025-01-25 23:41:32 +08:00
```
2025-01-24 18:59:24 +08:00
### Conversation History Support
LightRAG now supports multi-turn dialogue through the conversation history feature. Here's how to use it:
```python
from lightrag import LightRAG, QueryParam
# Initialize LightRAG
rag = LightRAG(working_dir=WORKING_DIR)
# Create conversation history
conversation_history = [
{"role": "user", "content": "What is the main character's attitude towards Christmas?"},
{"role": "assistant", "content": "At the beginning of the story, Ebenezer Scrooge has a very negative attitude towards Christmas..."},
{"role": "user", "content": "How does his attitude change?"}
]
# Create query parameters with conversation history
query_param = QueryParam(
mode="mix", # or any other mode: "local", "global", "hybrid"
conversation_history=conversation_history, # Add the conversation history
history_turns=3 # Number of recent conversation turns to consider
)
# Make a query that takes into account the conversation history
response = rag.query(
"What causes this change in his character?",
param=query_param
)
2024-10-10 15:02:30 +08:00
```
2024-10-16 17:45:49 +08:00
2025-01-27 10:32:22 +05:30
### Custom Prompt Support
LightRAG now supports custom prompts for fine-tuned control over the system's behavior. Here's how to use it:
2025-01-27 10:32:22 +05:30
```python
from lightrag import LightRAG, QueryParam
# Initialize LightRAG
rag = LightRAG(working_dir=WORKING_DIR)
# Create query parameters
query_param = QueryParam(
mode="hybrid", # or other mode: "local", "global", "hybrid"
)
# Example 1: Using the default system prompt
response_default = rag.query(
"What are the primary benefits of renewable energy?",
param=query_param
)
print(response_default)
# Example 2: Using a custom prompt
custom_prompt = """
You are an expert assistant in environmental science. Provide detailed and structured answers with examples.
"""
response_custom = rag.query(
"What are the primary benefits of renewable energy?",
param=query_param,
prompt=custom_prompt # Pass the custom prompt
)
print(response_custom)
```
2024-10-16 18:24:47 +08:00
<details>
<summary> Using Open AI-like APIs </summary>
2024-10-19 21:35:50 +08:00
* LightRAG also supports Open AI-like chat/embeddings APIs:
2024-10-16 17:45:49 +08:00
```python
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
2024-10-16 17:45:49 +08:00
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
2024-10-16 17:45:49 +08:00
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar"
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
max_token_size=8192,
func=embedding_func
)
)
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-16 17:45:49 +08:00
2024-10-16 18:24:47 +08:00
<details>
<summary> Using Hugging Face Models </summary>
2024-10-19 21:35:50 +08:00
* If you want to use Hugging Face models, you only need to set LightRAG as follows:
2024-10-15 19:55:30 +08:00
```python
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel, AutoTokenizer
from lightrag.utils import EmbeddingFunc
2024-10-15 19:55:30 +08:00
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
working_dir=WORKING_DIR,
2024-10-16 15:33:59 +08:00
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
2024-10-15 19:55:30 +08:00
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
2024-10-15 21:23:03 +08:00
# Use Hugging Face embedding function
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embedding(
texts,
2024-10-15 21:23:03 +08:00
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
)
),
2024-10-15 19:55:30 +08:00
)
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-16 17:45:49 +08:00
2024-10-16 18:24:47 +08:00
<details>
2024-10-17 16:02:43 +08:00
<summary> Using Ollama Models </summary>
2024-10-29 16:36:04 +08:00
### Overview
If you want to use Ollama models, you need to pull model you plan to use and embedding model, for example `nomic-embed-text`.
Then you only need to set LightRAG as follows:
2024-10-16 15:33:59 +08:00
```python
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
from lightrag.utils import EmbeddingFunc
2024-10-16 15:33:59 +08:00
# Initialize LightRAG with Ollama model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embed(
texts,
2024-10-16 15:33:59 +08:00
embed_model="nomic-embed-text"
)
),
)
```
2024-10-19 21:35:50 +08:00
2024-10-29 16:36:04 +08:00
### Increasing context size
In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
#### Increasing the `num_ctx` parameter in Modelfile.
2024-10-19 21:35:50 +08:00
1. Pull the model:
2024-10-29 16:36:04 +08:00
```bash
2024-10-19 21:35:50 +08:00
ollama pull qwen2
```
2. Display the model file:
2024-10-29 16:36:04 +08:00
```bash
2024-10-19 21:35:50 +08:00
ollama show --modelfile qwen2 > Modelfile
```
3. Edit the Modelfile by adding the following line:
2024-10-28 19:05:59 +02:00
```bash
2024-10-19 21:35:50 +08:00
PARAMETER num_ctx 32768
```
4. Create the modified model:
2024-10-28 19:05:59 +02:00
```bash
2024-10-19 21:35:50 +08:00
ollama create -f Modelfile qwen2m
```
2024-10-29 16:36:04 +08:00
#### Setup `num_ctx` via Ollama API.
Tiy can use `llm_model_kwargs` param to configure ollama:
```python
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
llm_model_kwargs={"options": {"num_ctx": 32768}},
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts,
embed_model="nomic-embed-text"
)
),
)
```
#### Fully functional example
There fully functional example `examples/lightrag_ollama_demo.py` that utilizes `gemma2:2b` model, runs only 4 requests in parallel and set context size to 32k.
#### Low RAM GPUs
In order to run this experiment on low RAM GPU you should select small model and tune context window (increasing context increase memory consumption). For example, running this ollama example on repurposed mining GPU with 6Gb of RAM required to set context size to 26k while using `gemma2:2b`. It was able to find 197 entities and 19 relations on `book.txt`.
2024-10-16 18:24:47 +08:00
</details>
2024-10-23 12:15:23 +08:00
2024-10-23 11:53:43 +08:00
### Query Param
2024-10-23 11:54:22 +08:00
2024-10-23 11:53:43 +08:00
```python
class QueryParam:
mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
2024-10-23 11:53:43 +08:00
only_need_context: bool = False
response_type: str = "Multiple Paragraphs"
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
top_k: int = 60
# Number of tokens for the original chunks.
max_token_for_text_unit: int = 4000
# Number of tokens for the relationship descriptions
max_token_for_global_context: int = 4000
# Number of tokens for the entity descriptions
max_token_for_local_context: int = 4000
```
2024-10-16 17:45:49 +08:00
> default value of Top_k can be change by environment variables TOP_K.
2024-10-15 19:55:30 +08:00
### Batch Insert
2024-10-23 11:54:22 +08:00
2024-10-10 15:02:30 +08:00
```python
# Basic Batch Insert: Insert multiple texts at once
2024-10-10 15:02:30 +08:00
rag.insert(["TEXT1", "TEXT2",...])
# Batch Insert with custom batch size configuration
rag = LightRAG(
working_dir=WORKING_DIR,
addon_params={
"insert_batch_size": 20 # Process 20 documents per batch
}
)
rag.insert(["TEXT1", "TEXT2", "TEXT3", ...]) # Documents will be processed in batches of 20
2024-10-10 15:02:30 +08:00
```
2024-10-16 17:45:49 +08:00
The `insert_batch_size` parameter in `addon_params` controls how many documents are processed in each batch during insertion. This is useful for:
- Managing memory usage with large document collections
- Optimizing processing speed
- Providing better progress tracking
- Default value is 10 if not specified
2024-10-15 19:55:30 +08:00
### Incremental Insert
2024-10-10 15:02:30 +08:00
```python
2024-10-15 19:55:30 +08:00
# Incremental Insert: Insert new documents into an existing LightRAG instance
2024-10-29 16:36:04 +08:00
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
2024-10-10 15:02:30 +08:00
with open("./newText.txt") as f:
rag.insert(f.read())
```
### Separate Keyword Extraction
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
##### How It Works?
2025-01-16 11:31:22 +05:30
The function operates by dividing the input into two parts:
- `User Query`
- `Prompt`
It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.
##### Usage Example
This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.
```python
rag.query_with_separate_keyword_extraction(
query="Explain the law of gravity",
prompt="Provide a detailed explanation suitable for high school students studying physics.",
param=QueryParam(mode="hybrid")
)
```
2024-10-20 18:22:43 +08:00
### Using Neo4J for Storage
* For production level scenarios you will most likely want to leverage an enterprise solution
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
* See: https://hub.docker.com/_/neo4j
```python
export NEO4J_URI="neo4j://localhost:7687"
export NEO4J_USERNAME="neo4j"
export NEO4J_PASSWORD="password"
# When you launch the project be sure to override the default KG: NetworkX
# by specifying kg="Neo4JStorage".
# Note: Default settings use NetworkX
# Initialize LightRAG with Neo4J implementation.
WORKING_DIR = "./local_neo4jWorkDir"
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
2024-12-03 16:04:58 +08:00
graph_storage="Neo4JStorage", #<-----------override KG default
log_level="DEBUG" #<-----------override log_level default
)
```
see test_neo4j.py for a working example.
### Using PostgreSQL for Storage
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (DO read the overview): https://hub.docker.com/r/shangor/postgres-for-rag
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
```
SET search_path = ag_catalog, "$user", public;
CREATE INDEX idx_entity ON dickens."Entity" USING gin (agtype_access_operator(properties, '"node_id"'));
```
* Known issue of the Apache AGE: The released versions got below issue:
> You might find that the properties of the nodes/edges are empty.
> It is a known issue of the release version: https://github.com/apache/age/pull/1721
>
> You can Compile the AGE from source code and fix it.
2024-11-25 18:06:19 +08:00
### Insert Custom KG
```python
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
custom_kg = {
"entities": [
{
"entity_name": "CompanyA",
"entity_type": "Organization",
"description": "A major technology company",
"source_id": "Source1"
},
{
"entity_name": "ProductX",
"entity_type": "Product",
"description": "A popular product developed by CompanyA",
"source_id": "Source1"
}
],
"relationships": [
{
"src_id": "CompanyA",
"tgt_id": "ProductX",
"description": "CompanyA develops ProductX",
"keywords": "develop, produce",
"weight": 1.0,
"source_id": "Source1"
}
2024-12-04 19:44:04 +08:00
],
"chunks": [
{
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
"source_id": "Source1",
},
{
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
"source_id": "Source2",
},
{
"content": "None",
"source_id": "UNKNOWN",
},
],
2024-11-25 18:06:19 +08:00
}
rag.insert_custom_kg(custom_kg)
```
2024-12-31 17:25:57 +08:00
### Delete
2024-11-11 17:48:40 +08:00
```python
2024-12-31 17:25:57 +08:00
2024-11-11 17:48:40 +08:00
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
2024-12-31 17:25:57 +08:00
# Delete Entity: Deleting entities by their names
2024-11-11 17:48:40 +08:00
rag.delete_by_entity("Project Gutenberg")
2024-12-31 17:25:57 +08:00
# Delete Document: Deleting entities and relationships associated with the document by doc id
rag.delete_by_doc_id("doc_id")
2024-11-11 17:48:40 +08:00
```
2024-10-29 16:36:04 +08:00
### Multi-file Type Support
2024-11-07 15:26:54 +08:00
The `textract` supports reading file types such as TXT, DOCX, PPTX, CSV, and PDF.
2024-10-29 16:36:04 +08:00
```python
2024-10-29 15:44:41 +08:00
import textract
2024-10-29 16:36:04 +08:00
file_path = 'TEXT.pdf'
2024-10-29 15:44:41 +08:00
text_content = textract.process(file_path)
2024-10-29 16:36:04 +08:00
rag.insert(text_content.decode('utf-8'))
```
2024-10-20 18:22:43 +08:00
### Graph Visualization
2024-10-20 23:08:26 +08:00
<details>
<summary> Graph visualization with html </summary>
* The following code can be found in `examples/graph_visual_with_html.py`
2024-10-20 18:22:43 +08:00
```python
import networkx as nx
from pyvis.network import Network
# Load the GraphML file
G = nx.read_graphml('./dickens/graph_chunk_entity_relation.graphml')
# Create a Pyvis network
net = Network(notebook=True)
# Convert NetworkX graph to Pyvis network
net.from_nx(G)
# Save and display the network
net.show('knowledge_graph.html')
```
2024-10-20 23:08:26 +08:00
</details>
<details>
<summary> Graph visualization with Neo4j </summary>
* The following code can be found in `examples/graph_visual_with_neo4j.py`
```python
import os
import json
from lightrag.utils import xml_to_json
from neo4j import GraphDatabase
# Constants
WORKING_DIR = "./dickens"
BATCH_SIZE_NODES = 500
BATCH_SIZE_EDGES = 100
# Neo4j connection credentials
NEO4J_URI = "bolt://localhost:7687"
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "your_password"
def convert_xml_to_json(xml_path, output_path):
"""Converts XML file to JSON and saves the output."""
if not os.path.exists(xml_path):
print(f"Error: File not found - {xml_path}")
return None
json_data = xml_to_json(xml_path)
if json_data:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2)
print(f"JSON file created: {output_path}")
return json_data
else:
print("Failed to create JSON data")
return None
def process_in_batches(tx, query, data, batch_size):
"""Process data in batches and execute the given query."""
for i in range(0, len(data), batch_size):
batch = data[i:i + batch_size]
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
def main():
# Paths
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
# Convert XML to JSON
json_data = convert_xml_to_json(xml_file, json_file)
if json_data is None:
return
# Load nodes and edges
nodes = json_data.get('nodes', [])
edges = json_data.get('edges', [])
# Neo4j queries
create_nodes_query = """
UNWIND $nodes AS node
MERGE (e:Entity {id: node.id})
SET e.entity_type = node.entity_type,
e.description = node.description,
e.source_id = node.source_id,
2024-10-29 16:36:04 +08:00
e.displayName = node.id
REMOVE e:Entity
2024-10-20 23:08:26 +08:00
WITH e, node
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
RETURN count(*)
"""
create_edges_query = """
UNWIND $edges AS edge
MATCH (source {id: edge.source})
MATCH (target {id: edge.target})
WITH source, target, edge,
CASE
WHEN edge.keywords CONTAINS 'lead' THEN 'lead'
WHEN edge.keywords CONTAINS 'participate' THEN 'participate'
WHEN edge.keywords CONTAINS 'uses' THEN 'uses'
WHEN edge.keywords CONTAINS 'located' THEN 'located'
WHEN edge.keywords CONTAINS 'occurs' THEN 'occurs'
ELSE REPLACE(SPLIT(edge.keywords, ',')[0], '\"', '')
END AS relType
CALL apoc.create.relationship(source, relType, {
weight: edge.weight,
description: edge.description,
keywords: edge.keywords,
source_id: edge.source_id
}, target) YIELD rel
RETURN count(*)
"""
set_displayname_and_labels_query = """
MATCH (n)
SET n.displayName = n.id
WITH n
CALL apoc.create.setLabels(n, [n.entity_type]) YIELD node
RETURN count(*)
"""
# Create a Neo4j driver
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
try:
# Execute queries in batches
with driver.session() as session:
# Insert nodes in batches
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
# Insert edges in batches
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
# Set displayName and labels
session.run(set_displayname_and_labels_query)
except Exception as e:
print(f"Error occurred: {e}")
2024-10-29 16:36:04 +08:00
2024-10-20 23:08:26 +08:00
finally:
driver.close()
if __name__ == "__main__":
main()
```
</details>
### LightRAG init parameters
| **Parameter** | **Type** | **Explanation** | **Default** |
|----------------------------------------------| --- |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| **working\_dir** | `str` | Directory where the cache will be stored | `lightrag_cache+timestamp` |
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
| **entity\_extract\_max\_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`default value changed by env var MAX_TOKENS) |
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16`default value changed by env var MAX_ASYNC) |
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2default value changed by env var COSINE_THRESHOLD) |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
2025-01-06 15:37:37 +08:00
| **enable\_llm\_cache\_for\_entity\_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
2024-10-29 16:36:04 +08:00
### Error Handling
2024-10-29 16:36:04 +08:00
<details>
<summary>Click to view error handling details</summary>
The API includes comprehensive error handling:
- File not found errors (404)
- Processing errors (500)
- Supports multiple file encodings (UTF-8 and GBK)
</details>
2024-10-10 15:02:30 +08:00
## Evaluation
### Dataset
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
2024-10-10 15:02:30 +08:00
### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code in `example/generate_query.py`.
2024-10-16 18:24:47 +08:00
<details>
<summary> Prompt </summary>
2024-10-10 15:02:30 +08:00
```python
Given the following description of a dataset:
{description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
```
2024-10-16 18:24:47 +08:00
</details>
### Batch Eval
2024-10-10 15:02:30 +08:00
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
2024-10-16 18:24:47 +08:00
<details>
<summary> Prompt </summary>
2024-10-10 15:02:30 +08:00
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
2024-10-10 15:02:30 +08:00
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}
Here are the two answers:
**Answer 1:**
{answer1}
**Answer 2:**
{answer2}
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-16 17:45:49 +08:00
2024-10-10 15:02:30 +08:00
### Overall Performance Table
2024-11-07 18:38:16 +08:00
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
2024-10-10 15:02:30 +08:00
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
2024-11-07 18:38:16 +08:00
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
| **Comprehensiveness** | 32.4% | **67.6%** | 38.4% | **61.6%** | 16.4% | **83.6%** | 38.8% | **61.2%** |
| **Diversity** | 23.6% | **76.4%** | 38.0% | **62.0%** | 13.6% | **86.4%** | 32.4% | **67.6%** |
| **Empowerment** | 32.4% | **67.6%** | 38.8% | **61.2%** | 16.4% | **83.6%** | 42.8% | **57.2%** |
| **Overall** | 32.4% | **67.6%** | 38.8% | **61.2%** | 15.2% | **84.8%** | 40.0% | **60.0%** |
| | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** |
| **Comprehensiveness** | 31.6% | **68.4%** | 38.8% | **61.2%** | 15.2% | **84.8%** | 39.2% | **60.8%** |
| **Diversity** | 29.2% | **70.8%** | 39.2% | **60.8%** | 11.6% | **88.4%** | 30.8% | **69.2%** |
| **Empowerment** | 31.6% | **68.4%** | 36.4% | **63.6%** | 15.2% | **84.8%** | 42.4% | **57.6%** |
| **Overall** | 32.4% | **67.6%** | 38.0% | **62.0%** | 14.4% | **85.6%** | 40.0% | **60.0%** |
| | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** |
| **Comprehensiveness** | 26.0% | **74.0%** | 41.6% | **58.4%** | 26.8% | **73.2%** | 40.4% | **59.6%** |
| **Diversity** | 24.0% | **76.0%** | 38.8% | **61.2%** | 20.0% | **80.0%** | 32.4% | **67.6%** |
| **Empowerment** | 25.2% | **74.8%** | 40.8% | **59.2%** | 26.0% | **74.0%** | 46.0% | **54.0%** |
| **Overall** | 24.8% | **75.2%** | 41.6% | **58.4%** | 26.4% | **73.6%** | 42.4% | **57.6%** |
| | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** |
| **Comprehensiveness** | 45.6% | **54.4%** | 48.4% | **51.6%** | 48.4% | **51.6%** | **50.4%** | 49.6% |
| **Diversity** | 22.8% | **77.2%** | 40.8% | **59.2%** | 26.4% | **73.6%** | 36.0% | **64.0%** |
| **Empowerment** | 41.2% | **58.8%** | 45.2% | **54.8%** | 43.6% | **56.4%** | **50.8%** | 49.2% |
| **Overall** | 45.2% | **54.8%** | 48.0% | **52.0%** | 47.2% | **52.8%** | **50.4%** | 49.6% |
2024-10-10 15:02:30 +08:00
## Reproduce
2024-10-11 15:16:43 +08:00
All the code can be found in the `./reproduce` directory.
2024-10-16 17:45:49 +08:00
2024-10-11 15:16:43 +08:00
### Step-0 Extract Unique Contexts
First, we need to extract unique contexts in the datasets.
2024-10-16 18:24:47 +08:00
<details>
<summary> Code </summary>
2024-10-11 15:16:43 +08:00
```python
def extract_unique_contexts(input_directory, output_directory):
os.makedirs(output_directory, exist_ok=True)
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
print(f"Found {len(jsonl_files)} JSONL files.")
for file_path in jsonl_files:
filename = os.path.basename(file_path)
name, ext = os.path.splitext(filename)
output_filename = f"{name}_unique_contexts.json"
output_path = os.path.join(output_directory, output_filename)
unique_contexts_dict = {}
print(f"Processing file: {filename}")
try:
with open(file_path, 'r', encoding='utf-8') as infile:
for line_number, line in enumerate(infile, start=1):
line = line.strip()
if not line:
continue
try:
json_obj = json.loads(line)
context = json_obj.get('context')
if context and context not in unique_contexts_dict:
unique_contexts_dict[context] = None
except json.JSONDecodeError as e:
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
except FileNotFoundError:
print(f"File not found: {filename}")
continue
except Exception as e:
print(f"An error occurred while processing file {filename}: {e}")
continue
unique_contexts_list = list(unique_contexts_dict.keys())
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
try:
with open(output_path, 'w', encoding='utf-8') as outfile:
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
print(f"Unique `context` entries have been saved to: {output_filename}")
except Exception as e:
print(f"An error occurred while saving to the file {output_filename}: {e}")
print("All files have been processed.")
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-16 17:45:49 +08:00
2024-10-11 15:16:43 +08:00
### Step-1 Insert Contexts
For the extracted contexts, we insert them into the LightRAG system.
2024-10-16 18:24:47 +08:00
<details>
<summary> Code </summary>
2024-10-11 15:16:43 +08:00
```python
def insert_text(rag, file_path):
with open(file_path, mode='r') as f:
unique_contexts = json.load(f)
2024-10-11 15:16:43 +08:00
retries = 0
max_retries = 3
while retries < max_retries:
try:
rag.insert(unique_contexts)
break
except Exception as e:
retries += 1
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
time.sleep(10)
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-16 17:45:49 +08:00
2024-10-11 15:16:43 +08:00
### Step-2 Generate Queries
We extract tokens from the first and the second half of each context in the dataset, then combine them as dataset descriptions to generate queries.
2024-10-16 18:24:47 +08:00
<details>
<summary> Code </summary>
2024-10-11 15:16:43 +08:00
```python
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
def get_summary(context, tot_tokens=2000):
tokens = tokenizer.tokenize(context)
half_tokens = tot_tokens // 2
start_tokens = tokens[1000:1000 + half_tokens]
end_tokens = tokens[-(1000 + half_tokens):1000]
summary_tokens = start_tokens + end_tokens
summary = tokenizer.convert_tokens_to_string(summary_tokens)
2024-10-11 15:16:43 +08:00
return summary
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-11 15:16:43 +08:00
### Step-3 Query
For the queries generated in Step-2, we will extract them and query LightRAG.
2024-10-16 18:24:47 +08:00
<details>
<summary> Code </summary>
2024-10-11 15:16:43 +08:00
```python
def extract_queries(file_path):
with open(file_path, 'r') as f:
data = f.read()
2024-10-11 15:16:43 +08:00
data = data.replace('**', '')
queries = re.findall(r'- Question \d+: (.+)', data)
return queries
```
2024-10-16 18:24:47 +08:00
</details>
2024-10-15 22:30:16 +08:00
## API
LightRag can be installed with API support to serve a Fast api interface to perform data upload and indexing/Rag operations/Rescan of the input folder etc..
2025-01-23 01:53:59 +08:00
The documentation can be found [here](lightrag/api/README.md)
2024-12-04 19:58:16 +08:00
2024-10-15 22:34:02 +08:00
## Star History
<a href="https://star-history.com/#HKUDS/LightRAG&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
</picture>
</a>
2024-11-05 15:05:35 +08:00
## Contribution
Thank you to all our contributors!
<a href="https://github.com/HKUDS/LightRAG/graphs/contributors">
<img src="https://contrib.rocks/image?repo=HKUDS/LightRAG" />
</a>
2024-11-05 11:34:54 +08:00
## 🌟Citation
2024-10-10 15:02:30 +08:00
2024-10-10 15:17:03 +08:00
```python
2024-10-10 15:02:30 +08:00
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
2024-10-10 15:02:30 +08:00
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
2024-11-05 11:34:54 +08:00
**Thank you for your interest in our work!**